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Chapter 1

Introduction

1.1 About This Manual
This abbreviated manual contains detailed solutions to all problems marked
with a star in Digital Image Processing, 3rd Edition.

1.2 Projects
You may be asked by your instructor to prepare comptuter projects in the fol-
lowing format:

Page 1: Cover page.

• Project title

• Project number

• Course number

• Student’s name

• Date due

• Date handed in

• Abstract (not to exceed 1/2 page)

Page 2: One to two pages (max) of technical discussion.

Page 3 (or 4): Discussion of results. One to two pages (max).
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2 CHAPTER 1. INTRODUCTION

Results: Image results (printed typically on a laser or inkjet printer). All images
must contain a number and title referred to in the discussion of results.

Appendix: Program listings, focused on any original code prepared by the stu-
dent. For brevity, functions and routines provided to the student are referred to
by name, but the code is not included.

Layout: The entire report must be on a standard sheet size (e.g., letter size in the
U.S. or A4 in Europe), stapled with three or more staples on the left margin to
form a booklet, or bound using clear plastic standard binding products.

1.3 About the Book Web Site
The companion web site

www.prenhall.com/gonzalezwoods

(or its mirror site)

www.imageprocessingplace.com

is a valuable teaching aid, in the sense that it includes material that previously
was covered in class. In particular, the review material on probability, matri-
ces, vectors, and linear systems, was prepared using the same notation as in
the book, and is focused on areas that are directly relevant to discussions in the
text. This allows the instructor to assign the material as independent reading,
and spend no more than one total lecture period reviewing those subjects. An-
other major feature is the set of solutions to problems marked with a star in the
book. These solutions are quite detailed, and were prepared with the idea of
using them as teaching support. The on-line availability of projects and digital
images frees the instructor from having to prepare experiments, data, and hand-
outs for students. The fact that most of the images in the book are available for
downloading further enhances the value of the web site as a teaching resource.
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Chapter 2

Problem Solutions

Problem 2.1
The diameter, x , of the retinal image corresponding to the dot is obtained from
similar triangles, as shown in Fig. P2.1. That is,

(d /2)
0.2

=
(x/2)
0.017

which gives x = 0.085d . From the discussion in Section 2.1.1, and taking some
liberties of interpretation, we can think of the fovea as a square sensor array
having on the order of 337,000 elements, which translates into an array of size
580× 580 elements. Assuming equal spacing between elements, this gives 580
elements and 579 spaces on a line 1.5 mm long. The size of each element and
each space is then s = [(1.5mm)/1,159] = 1.3× 10−6 m. If the size (on the fovea)
of the imaged dot is less than the size of a single resolution element, we assume
that the dot will be invisible to the eye. In other words, the eye will not detect a
dot if its diameter, d , is such that 0.085(d )< 1.3× 10−6 m, or d < 15.3× 10−6 m.

x/2xImage of the dot
on the fovea

Edge view of dot

d

d/2

0.2 m 0.017 m

Figure P2.1
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4 CHAPTER 2. PROBLEM SOLUTIONS

Problem 2.3

The solution is

λ = c/v

= 2.998× 108(m/s)/60(1/s)

= 4.997× 106 m= 4997 Km.

Problem 2.6

One possible solution is to equip a monochrome camera with a mechanical de-
vice that sequentially places a red, a green and a blue pass filter in front of the
lens. The strongest camera response determines the color. If all three responses
are approximately equal, the object is white. A faster system would utilize three
different cameras, each equipped with an individual filter. The analysis then
would be based on polling the response of each camera. This system would be
a little more expensive, but it would be faster and more reliable. Note that both
solutions assume that the field of view of the camera(s) is such that it is com-
pletely filled by a uniform color [i.e., the camera(s) is (are) focused on a part of
the vehicle where only its color is seen. Otherwise further analysis would be re-
quired to isolate the region of uniform color, which is all that is of interest in
solving this problem].

Problem 2.9

(a) The total amount of data (including the start and stop bit) in an 8-bit, 1024×
1024 image, is (1024)2×[8+2] bits. The total time required to transmit this image
over a 56K baud link is (1024)2× [8+ 2]/56000= 187.25 sec or about 3.1 min.

(b) At 3000K this time goes down to about 3.5 sec.

Problem 2.11

Let p and q be as shown in Fig. P2.11. Then, (a) S1 and S2 are not 4-connected
because q is not in the set N4(p ); (b) S1 and S2 are 8-connected because q is in
the set N8(p ); (c) S1 and S2 are m-connected because (i) q is in ND (p ), and (ii)
the set N4(p ) ∩N4(q ) is empty.
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Figure P2.11

Problem 2.12

The solution of this problem consists of defining all possible neighborhood shapes
to go from a diagonal segment to a corresponding 4-connected segments as Fig.
P2.12 illustrates. The algorithm then simply looks for the appropriate match ev-
ery time a diagonal segments is encountered in the boundary.

� or

� or

� or

� or

Figure P2.12
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Figure P.2.15

Problem 2.15
(a) When V = {0,1}, 4-path does not exist between p and q because it is impos-
sible to get from p to q by traveling along points that are both 4-adjacent and
also have values from V . Figure P2.15(a) shows this condition; it is not possible
to get to q . The shortest 8-path is shown in Fig. P2.15(b); its length is 4. The
length of the shortest m - path (shown dashed) is 5. Both of these shortest paths
are unique in this case.

Problem 2.16
(a) A shortest 4-path between a point p with coordinates (x ,y ) and a point q
with coordinates (s , t ) is shown in Fig. P2.16, where the assumption is that all
points along the path are from V . The length of the segments of the path are
|x − s | and

��y − t
��, respectively. The total path length is |x − s |+ ��y − t

��, which we
recognize as the definition of the D4 distance, as given in Eq. (2.5-2). (Recall that
this distance is independent of any paths that may exist between the points.)
The D4 distance obviously is equal to the length of the shortest 4-path when the
length of the path is |x − s |+ ��y − t

��. This occurs whenever we can get from p
to q by following a path whose elements (1) are from V, and (2) are arranged in
such a way that we can traverse the path from p to q by making turns in at most
two directions (e.g., right and up).

Problem 2.18
With reference to Eq. (2.6-1), let H denote the sum operator, let S1 and S2 de-
note two different small subimage areas of the same size, and let S1+S2 denote
the corresponding pixel-by-pixel sum of the elements in S1 and S2, as explained
in Section 2.6.1. Note that the size of the neighborhood (i.e., number of pixels)
is not changed by this pixel-by-pixel sum. The operator H computes the sum
of pixel values in a given neighborhood. Then, H (aS1 + bS2) means: (1) mul-
tiply the pixels in each of the subimage areas by the constants shown, (2) add
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Figure P2.16

the pixel-by-pixel values from aS1 and bS2 (which produces a single subimage
area), and (3) compute the sum of the values of all the pixels in that single subim-
age area. Let a p1 and bp2 denote two arbitrary (but corresponding) pixels from
aS1+bS2. Then we can write

H (aS1+bS2) =
∑

p1∈S1 and p2∈S2

a p1+bp2

=
∑

p1∈S1

a p1+
∑

p2∈S2

bp2

= a
∑

p1∈S1

p1+b
∑

p2∈S2

p2

= a H (S1)+bH (S2)

which, according to Eq. (2.6-1), indicates that H is a linear operator.

Problem 2.20
From Eq. (2.6-5), at any point (x ,y ),

g =
1

K

K∑
i=1

g i =
1

K

K∑
i=1

f i +
1

K

K∑
i=1

ηi .

Then

E {g }= 1

K

K∑
i=1

E { f i }+ 1

K

K∑
i=1

E {ηi }.
But all the f i are the same image, so E { f i } = f . Also, it is given that the noise
has zero mean, so E {ηi } = 0. Thus, it follows that E {g } = f , which proves the
validity of Eq. (2.6-6).
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To prove the validity of Eq. (2.6-7) consider the preceding equation again:

g =
1

K

K∑
i=1

g i =
1

K

K∑
i=1

f i +
1

K

K∑
i=1

ηi .

It is known from random-variable theory that the variance of the sum of uncor-
related random variables is the sum of the variances of those variables (Papoulis
[1991]). Because it is given that the elements of f are constant and the ηi are
uncorrelated, then

σ2
g =σ

2
f +

1

K 2 [σ
2
η1
+σ2

η2
+ · · ·+σ2

ηK
].

The first term on the right side is 0 because the elements of f are constants. The
various σ2

ηi
are simply samples of the noise, which is has variance σ2

η. Thus,
σ2
ηi
=σ2

η and we have

σ2
g =

K

K 2σ
2
η =

1

K
σ2
η

which proves the validity of Eq. (2.6-7).

Problem 2.22
Let g (x ,y ) denote the golden image, and let f (x ,y ) denote any input image ac-
quired during routine operation of the system. Change detection via subtrac-
tion is based on computing the simple difference d (x ,y ) = g (x ,y )− f (x ,y ). The
resulting image, d (x ,y ), can be used in two fundamental ways for change de-
tection. One way is use pixel-by-pixel analysis. In this case we say that f (x ,y ) is
“close enough” to the golden image if all the pixels in d (x ,y ) fall within a spec-
ified threshold band [Tm i n ,Tm ax ] where Tm i n is negative and Tm ax is positive.
Usually, the same value of threshold is used for both negative and positive dif-
ferences, so that we have a band [−T,T ] in which all pixels of d (x ,y )must fall in
order for f (x ,y ) to be declared acceptable. The second major approach is sim-
ply to sum all the pixels in

��d (x ,y )
�� and compare the sum against a threshold Q.

Note that the absolute value needs to be used to avoid errors canceling out. This
is a much cruder test, so we will concentrate on the first approach.

There are three fundamental factors that need tight control for difference-
based inspection to work: (1) proper registration, (2) controlled illumination,
and (3) noise levels that are low enough so that difference values are not affected
appreciably by variations due to noise. The first condition basically addresses
the requirement that comparisons be made between corresponding pixels. Two
images can be identical, but if they are displaced with respect to each other,
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Figure P2.23

comparing the differences between them makes no sense. Often, special mark-
ings are manufactured into the product for mechanical or image-based align-
ment

Controlled illumination (note that “illumination” is not limited to visible light)
obviously is important because changes in illumination can affect dramatically
the values in a difference image. One approach used often in conjunction with
illumination control is intensity scaling based on actual conditions. For exam-
ple, the products could have one or more small patches of a tightly controlled
color, and the intensity (and perhaps even color) of each pixels in the entire im-
age would be modified based on the actual versus expected intensity and/or
color of the patches in the image being processed.

Finally, the noise content of a difference image needs to be low enough so
that it does not materially affect comparisons between the golden and input im-
ages. Good signal strength goes a long way toward reducing the effects of noise.
Another (sometimes complementary) approach is to implement image process-
ing techniques (e.g., image averaging) to reduce noise.

Obviously there are a number if variations of the basic theme just described.
For example, additional intelligence in the form of tests that are more sophisti-
cated than pixel-by-pixel threshold comparisons can be implemented. A tech-
nique used often in this regard is to subdivide the golden image into different
regions and perform different (usually more than one) tests in each of the re-
gions, based on expected region content.

Problem 2.23
(a) The answer is shown in Fig. P2.23.
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Problem 2.26
From Eq. (2.6-27) and the definition of separable kernels,

T (u ,v ) =
M−1∑
x=0

N−1∑
y=0

f (x ,y )r (x ,y ,u ,v )

=
M−1∑
x=0

r1(x ,u )
N−1∑
y=0

f (x ,y )r2(y ,v )

=
M−1∑
x=0

T (x ,v )r1(x ,u )

where

T (x ,v ) =
N−1∑
y=0

f (x ,y )r2(y ,v ).

For a fixed value of x , this equation is recognized as the 1-D transform along
one row of f (x ,y ). By letting x vary from 0 to M −1 we compute the entire array
T (x ,v ). Then, by substituting this array into the last line of the previous equa-
tion we have the 1-D transform along the columns of T (x ,v ). In other words,
when a kernel is separable, we can compute the 1-D transform along the rows
of the image. Then we compute the 1-D transform along the columns of this in-
termediate result to obtain the final 2-D transform, T (u ,v ). We obtain the same
result by computing the 1-D transform along the columns of f (x ,y ) followed by
the 1-D transform along the rows of the intermediate result.

This result plays an important role in Chapter 4 when we discuss the 2-D
Fourier transform. From Eq. (2.6-33), the 2-D Fourier transform is given by

T (u ,v ) =
M−1∑
x=0

N−1∑
y=0

f (x ,y )e−j 2π(u x/M+v y /N ).

It is easily verified that the Fourier transform kernel is separable (Problem 2.25),
so we can write this equation as

T (u ,v ) =
M−1∑
x=0

N−1∑
y=0

f (x ,y )e−j 2π(u x/M+v y /N )

=
M−1∑
x=0

e−j 2π(u x/M )
N−1∑
y=0

f (x ,y )e−j 2π(v y /N )

=
M−1∑
x=0

T (x ,v )e−j 2π(u x/M )
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where

T (x ,v ) =
N−1∑
y=0

f (x ,y )e−j 2π(v y /N )

is the 1-D Fourier transform along the rows of f (x ,y ), as we let x = 0,1, . . . ,M−1.
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Chapter 3

Problem Solutions

Problem 3.1
Let f denote the original image. First subtract the minimum value of f denoted
f min from f to yield a function whose minimum value is 0:

g 1 = f − f min

Next divide g 1 by its maximum value to yield a function in the range [0,1] and
multiply the result by L− 1 to yield a function with values in the range [0, L− 1]

g =
L− 1

max
�

g 1
� g 1

=
L− 1

max
�

f − f min
� � f − f min

�
Keep in mind that f min is a scalar and f is an image.

Problem 3.3
(a) s = T (r ) = 1

1+(m/r )E .

Problem 3.5
(a) The number of pixels having different intensity level values would decrease,
thus causing the number of components in the histogram to decrease. Because
the number of pixels would not change, this would cause the height of some of
the remaining histogram peaks to increase in general. Typically, less variability
in intensity level values will reduce contrast.

13
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L � 1

2( 1)L �

L � 1L/4 3 /4LL/20

L � 1

( 1)/2L �

L � 1

L/4 3 /4LL/20

Figure P3.9.

Problem 3.6
All that histogram equalization does is remap histogram components on the in-
tensity scale. To obtain a uniform (flat) histogram would require in general that
pixel intensities actually be redistributed so that there are L groups of n/L pixels
with the same intensity, where L is the number of allowed discrete intensity lev-
els and n =M N is the total number of pixels in the input image. The histogram
equalization method has no provisions for this type of (artificial) intensity redis-
tribution process.

Problem 3.9
We are interested in just one example in order to satisfy the statement of the
problem. Consider the probability density function in Fig. P3.9(a). A plot of
the transformation T (r ) in Eq. (3.3-4) using this particular density function is
shown in Fig. P3.9(b). Because pr (r ) is a probability density function we know
from the discussion in Section 3.3.1 that the transformation T (r ) satisfies con-
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ditions (a) and (b) stated in that section. However, we see from Fig. P3.9(b) that
the inverse transformation from s back to r is not single valued, as there are an
infinite number of possible mappings from s = (L− 1)/2 back to r . It is impor-
tant to note that the reason the inverse transformation function turned out not
to be single valued is the gap in pr (r ) in the interval [L/4,3L/4].

Problem 3.10

(b) If none of the intensity levels rk , k = 1,2, . . . , L − 1, are 0, then T (rk ) will be
strictly monotonic. This implies a one-to-one mapping both ways, meaning that
both forward and inverse transformations will be single-valued.

Problem 3.12
The value of the histogram component corresponding to the kth intensity level
in a neighborhood is

pr (rk ) =
n k

n

for k = 1,2, . . . , K − 1, where n k is the number of pixels having intensity level rk ,
n is the total number of pixels in the neighborhood, and K is the total number
of possible intensity levels. Suppose that the neighborhood is moved one pixel
to the right (we are assuming rectangular neighborhoods). This deletes the left-
most column and introduces a new column on the right. The updated histogram
then becomes

p ′r (rk ) =
1

n
[n k −n L k +n Rk ]

for k = 0,1, . . . , K − 1, where n L k is the number of occurrences of level rk on the
left column and n Rk is the similar quantity on the right column. The preceding
equation can be written also as

p ′r (rk ) = pr (rk )+
1

n
[n Rk −n L k ]

for k = 0,1, . . . , K −1. The same concept applies to other modes of neighborhood
motion:

p ′r (rk ) = pr (rk )+
1

n
[bk −a k ]

for k = 0,1, . . . , K −1, where a k is the number of pixels with value rk in the neigh-
borhood area deleted by the move, and bk is the corresponding number intro-
duced by the move.
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Problem 3.13
The purpose of this simple problem is to make the student think of the meaning
of histograms and arrive at the conclusion that histograms carry no information
about spatial properties of images. Thus, the only time that the histogram of the
images formed by the operations shown in the problem statement can be de-
termined in terms of the original histograms is when one (both) of the images
is (are) constant. In (d) we have the additional requirement that none of the
pixels of g (x , y ) can be 0. Assume for convenience that the histograms are not
normalized, so that, for example, h f (rk ) is the number of pixels in f (x , y ) having
intensity level rk . Assume also that all the pixels in g (x , y ) have constant value c .
The pixels of both images are assumed to be positive. Finally, let u k denote the
intensity levels of the pixels of the images formed by any of the arithmetic oper-
ations given in the problem statement. Under the preceding set of conditions,
the histograms are determined as follows:

(a) We obtain the histogram hsum(u k ) of the sum by letting u k = rk + c , and also
hsum(u k ) = h f (rk ) for all k . In other words, the values (height) of the compo-
nents of hsum are the same as the components of h f , but their locations on the
intensity axis are shifted right by an amount c .

Problem 3.15
(a) Consider a 3×3 mask first. Because all the coefficients are 1 (we are ignoring
the 1/9 scale factor), the net effect of the lowpass filter operation is to add all the
intensity values of pixels under the mask. Initially, it takes 8 additions to produce
the response of the mask. However, when the mask moves one pixel location to
the right, it picks up only one new column. The new response can be computed
as

Rnew =Rold−C1+C3

where C1 is the sum of pixels under the first column of the mask before it was
moved, and C3 is the similar sum in the column it picked up after it moved. This
is the basic box-filter or moving-average equation. For a 3× 3 mask it takes 2
additions to get C3 (C1 was already computed). To this we add one subtraction
and one addition to get Rnew. Thus, a total of 4 arithmetic operations are needed
to update the response after one move. This is a recursive procedure for moving
from left to right along one row of the image. When we get to the end of a row, we
move down one pixel (the nature of the computation is the same) and continue
the scan in the opposite direction.

For a mask of size n ×n , (n − 1) additions are needed to obtain C3, plus the
single subtraction and addition needed to obtain Rnew, which gives a total of
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(n + 1) arithmetic operations after each move. A brute-force implementation
would require n 2− 1 additions after each move.

Problem 3.16
(a) The key to solving this problem is to recognize (1) that the convolution re-
sult at any location (x ,y ) consists of centering the mask at that point and then
forming the sum of the products of the mask coefficients with the corresponding
pixels in the image; and (2) that convolution of the mask with the entire image
results in every pixel in the image being visited only once by every element of
the mask (i.e., every pixel is multiplied once by every coefficient of the mask).
Because the coefficients of the mask sum to zero, this means that the sum of the
products of the coefficients with the same pixel also sum to zero. Carrying out
this argument for every pixel in the image leads to the conclusion that the sum
of the elements of the convolution array also sum to zero.

Problem 3.18
(a) There are n 2 points in an n × n median filter mask. Because n is odd, the
median value, ζ, is such that there are (n 2− 1)/2 points with values less than or
equal to ζ and the same number with values greater than or equal to ζ. How-
ever, because the area A (number of points) in the cluster is less than one half
n 2, and A and n are integers, it follows that A is always less than or equal to
(n 2 − 1)/2. Thus, even in the extreme case when all cluster points are encom-
passed by the filter mask, there are not enough points in the cluster for any of
them to be equal to the value of the median (remember, we are assuming that
all cluster points are lighter or darker than the background points). Therefore, if
the center point in the mask is a cluster point, it will be set to the median value,
which is a background shade, and thus it will be “eliminated” from the cluster.
This conclusion obviously applies to the less extreme case when the number of
cluster points encompassed by the mask is less than the maximum size of the
cluster.

Problem 3.19
(a) Numerically sort the n 2 values. The median is

ζ= [(n 2+ 1)/2]-th largest value.

(b) Once the values have been sorted one time, we simply delete the values in
the trailing edge of the neighborhood and insert the values in the leading edge
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Figure P3.21

in the appropriate locations in the sorted array.

Problem 3.21
From Fig. 3.33 we know that the vertical bars are 5 pixels wide, 100 pixels high,
and their separation is 20 pixels. The phenomenon in question is related to the
horizontal separation between bars, so we can simplify the problem by consid-
ering a single scan line through the bars in the image. The key to answering this
question lies in the fact that the distance (in pixels) between the onset of one bar
and the onset of the next one (say, to its right) is 25 pixels.

Consider the scan line shown in Fig. P3.21. Also shown is a cross section
of a 25× 25 mask. The response of the mask is the average of the pixels that it
encompasses. We note that when the mask moves one pixel to the right, it loses
one value of the vertical bar on the left, but it picks up an identical one on the
right, so the response doesn’t change. In fact, the number of pixels belonging
to the vertical bars and contained within the mask does not change, regardless
of where the mask is located (as long as it is contained within the bars, and not
near the edges of the set of bars).

The fact that the number of bar pixels under the mask does not change is due
to the peculiar separation between bars and the width of the lines in relation
to the 25-pixel width of the mask This constant response is the reason why no
white gaps are seen in the image shown in the problem statement. Note that this
constant response does not happen with the 23×23 or the 45×45 masks because
they are not ”synchronized” with the width of the bars and their separation.

Problem 3.24
The Laplacian operator is defined as

∇2 f =
∂ 2 f

∂ x 2
+
∂ 2 f

∂ y 2
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for the unrotated coordinates, and as

∇2 f =
∂ 2 f

∂ x ′2 +
∂ 2 f

∂ y ′2 .

for rotated coordinates. It is given that

x = x ′ cosθ − y ′ sinθ and y = x ′ sinθ + y ′ cosθ

where θ is the angle of rotation. We want to show that the right sides of the first

two equations are equal. We start with

∂ f

∂ x ′ =
∂ f

∂ x

∂ x

∂ x ′ +
∂ f

∂ y

∂ y

∂ x ′

=
∂ f

∂ x
cosθ +

∂ f

∂ y
sinθ .

Taking the partial derivative of this expression again with respect to x ′ yields

∂ 2 f

∂ x ′2 =
∂ 2 f

∂ x 2 cos2θ +
∂

∂ x

�
∂ f

∂ y

�
sinθ cosθ +

∂

∂ y

�
∂ f

∂ x

�
cosθ sinθ +

∂ 2 f

∂ y 2 sin2θ .

Next, we compute

∂ f

∂ y ′ =
∂ f

∂ x

∂ x

∂ y ′ +
∂ f

∂ y

∂ y

∂ y ′

=−∂ f

∂ x
sinθ +

∂ f

∂ y
cosθ .

Taking the derivative of this expression again with respect to y ′ gives

∂ 2 f

∂ y ′2 =
∂ 2 f

∂ x 2 sin2θ − ∂
∂ x

�
∂ f

∂ y

�
cosθ sinθ − ∂

∂ y

�
∂ f

∂ x

�
sinθ cosθ +

∂ 2 f

∂ y 2 cos2θ .

Adding the two expressions for the second derivatives yields

∂ 2 f

∂ x ′2 +
∂ 2 f

∂ y ′2 =
∂ 2 f

∂ x 2 +
∂ 2 f

∂ y 2

which proves that the Laplacian operator is independent of rotation.
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Problem 3.25
The Laplacian mask with a−4 in the center performs an operation proportional
to differentiation in the horizontal and vertical directions. Consider for a mo-
ment a 3× 3 “Laplacian” mask with a −2 in the center and 1s above and below
the center. All other elements are 0. This mask will perform differentiation in
only one direction, and will ignore intensity transitions in the orthogonal direc-
tion. An image processed with such a mask will exhibit sharpening in only one
direction. A Laplacian mask with a -4 in the center and 1s in the vertical and
horizontal directions will obviously produce an image with sharpening in both
directions and in general will appear sharper than with the previous mask. Sim-
ilarly, and mask with a −8 in the center and 1s in the horizontal, vertical, and
diagonal directions will detect the same intensity changes as the mask with the
−4 in the center but, in addition, it will also be able to detect changes along the
diagonals, thus generally producing sharper-looking results.

Problem 3.28
Consider the following equation:

f (x ,y )−∇2 f (x ,y ) = f (x ,y )− � f (x + 1,y )+ f (x − 1,y )+ f (x ,y + 1)

+ f (x ,y − 1)− 4f (x ,y )
	

= 6f (x ,y )− � f (x + 1,y )+ f (x − 1,y )+ f (x ,y + 1)

+ f (x ,y − 1)+ f (x ,y )

= 5



1.2f (x ,y )−
1

5

�
f (x + 1,y )+ f (x − 1,y )+ f (x ,y + 1)

+ f (x ,y − 1)+ f (x ,y )
	�

= 5
�

1.2f (x ,y )− f (x ,y )


where f (x ,y ) denotes the average of f (x ,y ) in a predefined neighborhood cen-
tered at (x ,y ) and including the center pixel and its four immediate neighbors.
Treating the constants in the last line of the above equation as proportionality
factors, we may write

f (x ,y )−∇2 f (x ,y )� f (x ,y )− f (x ,y ).

The right side of this equation is recognized within the just-mentioned propor-
tionality factors to be of the same form as the definition of unsharp masking
given in Eqs. (3.6-8) and (3.6-9). Thus, it has been demonstrated that subtract-
ing the Laplacian from an image is proportional to unsharp masking.
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Problem 3.33
The thickness of the boundaries increases as a the size of the filtering neigh-
borhood increases. We support this conclusion with an example. Consider a
one-pixel-thick straight black line running vertically through a white image. If
a 3× 3 neighborhood is used, any neighborhoods whose centers are more than
two pixels away from the line will produce differences with values of zero and the
center pixel will be designated a region pixel. Leaving the center pixel at same
location, if we increase the size of the neighborhood to, say, 5× 5, the line will
be encompassed and not all differences be zero, so the center pixel will now be
designated a boundary point, thus increasing the thickness of the boundary. As
the size of the neighborhood increases, we would have to be further and further
from the line before the center point ceases to be called a boundary point. That
is, the thickness of the boundary detected increases as the size of the neighbor-
hood increases.

Problem 3.34
(a) If the intensity of the center pixel of a 3× 3 region is larger than the intensity
of all its neighbors, then decrease it. If the intensity is smaller than the intensity
of all its neighbors, then increase it. Else, do not nothing.

(b) Rules

IF d 2 is PO AND d 4 is PO AND d 6 is PO AND d 8 is PO THEN v is PO
IF d 2 is NE AND d 4 is NE AND d 6 is NE AND d 8 is NE THEN v is NE
ELSE v is ZR.

Note: In rule 1, all positive differences mean that the intensity of the noise pulse
(z 5) is less than that of all its 4-neighbors. Then we’ll want to make the output
z ′5 more positive so that when it is added to z 5 it will bring the value of the cen-
ter pixel closer to the values of its neighbors. The converse is true when all the
differences are negative. A mixture of positive and negative differences calls for
no action because the center pixel is not a clear spike. In this case the correction
should be zero (keep in mind that zero is a fuzzy set too).
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Chapter 4

Problem Solutions

Problem 4.2

(a) To prove infinite periodicity in both directions with period 1/ΔT , we have to
show that F̃

�
μ+k [1/ΔT ]

�
= F̃ (μ) for k = 0,±1,±2, . . . . From Eq. (4.3-5),

F̃
�
μ+k [1/ΔT ]

�
=

1

�T

∞∑
n=−∞

F

�
μ+

k

�T
− n

�T

�

=
1

�T

∞∑
n=−∞

F

�
μ+

k −n

�T

�

=
1

�T

∞∑
m=−∞

F

�
μ− m

�T

�

= F̃
�
μ
�

where the third line follows from the fact that k and n are integers and the limits
of summation are symmetric about the origin. The last step follows from Eq.
(4.3-5).

(b) Again, we need to show that F̃
�
μ+k/ΔT

�
= F̃ (μ) for k = 0,±1,±2, . . . . From

Eq. (4.4-2),

23
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F̃
�
μ+k/ΔT

�
=

∞∑
n=−∞

f n e−j 2π(μ+k /ΔT )nΔT

=
∞∑

n=−∞
f n e−j 2πμnΔT e−j 2πk n

=
∞∑

n=−∞
f n e−j 2πμnΔT

= F̃
�
μ
�

where the third line follows from the fact that e−j 2πk n = 1 because both k and n
are integers (see Euler’s formula), and the last line follows from Eq. (4.4-2).

Problem 4.3
From the definition of the 1-D Fourier transform in Eq. (4.2-16),

F
�
μ
�
=

∫ ∞
−∞

f (t )e−j 2πμt d t

=

∫ ∞
−∞

sin (2πnt ) e−j 2πμt d t

=
−j

2

∫ ∞
−∞

�
e j 2πnt − e−j 2πnt


e−j 2πμt d t

=
−j

2

∫ ∞
−∞

�
e j 2πnt


e−j 2πμt d t − −j

2

∫ ∞
−∞

�
e−j 2πnt


e−j 2πμt d t .

From the translation property in Table 4.3 we know that

f (t )e j 2πμ0t ⇔ F
�
μ−μ0

�
and we know from the statement of the problem that the Fourier transform of a
constant

�
f (t ) = 1

	
is an impulse. Thus,

(1)e j 2πμ0t ⇔δ
�
μ−μ0

�
.

Thus, we see that the leftmost integral in the the last line above is the Fourier
transform of (1)e j 2πnt , which is δ

�
μ−n

�
, and similarly, the second integral is

the transform of (1) e−j 2πnt , or δ
�
μ+n

�
. Combining all results yields

F
�
μ
�
=

j

2

�
δ
�
μ+n

�−δ�μ−n
�	

as desired.
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n- n
�

F( )�

(a)

n

�n

� T

1

� n
� T

1

� T

�1

� T

1
+ n

. . . .

. . . .

�

F( )�

(b)

Figure P4.4

Problem 4.4

(a) The period is such that 2πnt = 2π, or t = 1/n .

(b) The frequency is 1 divided by the period, or n . The continuous Fourier trans-
form of the given sine wave looks as in Fig. P4.4(a) (see Problem 4.3), and the
transform of the sampled data (showing a few periods) has the general form il-
lustrated in Fig. P4.4(b) (the dashed box is an ideal filter that would allow recon-
struction if the sine function were sampled, with the sampling theorem being
satisfied).

(c) The Nyquist sampling rate is exactly twice the highest frequency, or 2n . That
is, (1/ΔT ) = 2n , or ΔT = 1/2n . Taking samples at t = ±ΔT,±2ΔT, . . . would
yield the sampled function sin (2πnΔT ) whose values are all 0s because ΔT =
1/2n and n is an integer. In terms of Fig. P4.4(b), we see that when ΔT = 1/2n
all the positive and negative impulses would coincide, thus canceling each other
and giving a result of 0 for the sampled data.
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Problem 4.5
Starting from Eq. (4.2-20),

f (t ) g (t ) =

∫ ∞
−∞

f (τ)g (t −τ)dτ.

The Fourier transform of this expression is

ℑ� f (t ) g (t )
	
=

∫ ∞
−∞

⎡
⎣∫ ∞
−∞

f (τ)g (t −τ)dτ
⎤
⎦e−j 2πμt d t

=

∫ ∞
−∞

f (τ)

⎡
⎣∫ ∞
−∞

g (t −τ)e−j 2πμt d t

⎤
⎦dτ.

The term inside the inner brackets is the Fourier transform of g (t −τ). But, we
know from the translation property (Table 4.3) that

ℑ�g (t −τ)	=G (μ)e−j 2πμτ

so

ℑ� f (t ) g (t )
	
=

∫ ∞
−∞

f (τ)
�

G (μ)e−j 2πμτ


dτ

= G (μ)

∫ ∞
−∞

f (τ)e−j 2πμτdτ

= G (μ)F (μ).

This proves that multiplication in the frequency domain is equal to convolution
in the spatial domain. The proof that multiplication in the spatial domain is
equal to convolution in the spatial domain is done in a similar way.

Problem 4.8

(b) We solve this problem as above, by direct substitution and using orthogonal-
ity. Substituting Eq. (4.4-7) into (4.4-6) yields

F (u ) =
M−1∑
x=0

⎡
⎣ 1

M

M−1∑
r=0

F (u )e−j 2πr x/M

⎤
⎦e−j 2πu x/M

=
1

M

M−1∑
r=0

F (r )

⎡
⎣M−1∑

x=0

e−j 2πr x/M e−j 2πu x/M

⎤
⎦

= F (u )
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where the last step follows from the orthogonality condition given in the prob-
lem statement. Substituting Eq. (4.4-6) into (4.6-7) and using the same basic
procedure yields a similar identity for f (x ).

Problem 4.10
With reference to the statement of the convolution theorem given in Eqs. (4.2-
21) and (4.2-22), we need to show that

f (x ) h(x )⇔ F (u )H (u )

and that
f (x )h(x )⇔ F (u ) H (u ).

From Eq. (4.4-10) and the definition of the DFT in Eq. (4.4-6),

ℑ� f (x ) h(x )
	
=

M−1∑
x=0

⎡
⎣M−1∑

m=0

f (m )h(x −m )

⎤
⎦e−j 2πu x/M

=
M−1∑
m=0

f (m )

⎡
⎣M−1∑

x=0

h(x −m )e−j 2πu x/M

⎤
⎦

=
M−1∑
m=0

f (m )H (u )e−j 2πu m/M

= H (u )
M−1∑
m=0

f (m )e−j 2πu m/M

= H (u )F (u ).

The other half of the discrete convolution theorem is proved in a similar manner.

Problem 4.11
With reference to Eq. (4.2-20),

f (t ,z ) h(t ,z ) =

∫ ∞
−∞

∫ ∞
−∞

f (α,β )h(t −α,z −β )dαdβ .

Problem 4.14
From Eq. (4.5-7),

Recall that in this chapter we
use (t ,z ) and (μ,ν ) for
continuous variables, and
(x ,y ) and (u ,v ) for discrete
variables.

F (μ,ν ) = ℑ� f (t ,z )
	
=

∫ ∞
−∞

∫ ∞
−∞

f (t ,z )e−j 2π(μt+νz )d t d z .
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From Eq. (2.6-2), the Fourier transform operation is linear if

ℑ�a 1 f 1(t ,z )+a 2 f 2(t ,z )
	
= a 1ℑ� f 1(t ,z )

	
+a 2ℑ� f 2(t ,z )

	
.

Substituting into the definition of the Fourier transform yields

ℑ�a 1 f 1(t ,z )+a 2 f 2(t ,z )
	
=

∫ ∞
−∞

∫ ∞
−∞

�
a 1 f 1(t ,z )+a 2 f 2(t ,z )

	
×e−j 2π(μt+νz )d t d z

= a 1

∫ ∞
−∞

∫ ∞
−∞

f (t ,z )e−j 2π(μt+νz )d t d z

+ a 2

∫ ∞
−∞

∫ ∞
−∞

f 2(t ,z )e−j 2π(μt+νz )d t d z

= a 1ℑ� f 1(t ,z )
	
+a 2ℑ� f 2(t ,z )

	
.

where the second step follows from the distributive property of the integral.
Similarly, for the discrete case,

ℑ�a 1 f 1(x ,y )+a 2 f 2(x ,y )
	
=

M−1∑
x=0

N−1∑
y=0

�
a 1 f 1(x ,y )+a 2 f 2(x ,y )

	
e−j 2π(u x/M+v y /N )

= a 1

M−1∑
x=0

N−1∑
y=0

f 1(x ,y )e−j 2π(u x/M+v y /N )

+ a 2

M−1∑
x=0

N−1∑
y=0

f 2(x ,y )e−j 2π(u x/M+v y /N )

= a 1ℑ� f 1(x ,y )
	
+a 2ℑ� f 2(x ,y )

	
.

The linearity of the inverse transforms is proved in exactly the same way.

Problem 4.16
(a) From Eq. (4.5-15),

ℑ� f (x ,y )e j 2π(u 0x+v0y )

=

M−1∑
x=0

N−1∑
y=0

�
f (x ,y )e j 2π(u 0x+v0y )


e−j 2π(u x/M+v y /N )

=
M−1∑
x=0

N−1∑
y=0

f (x ,y )e−j 2π[(u−u 0)x/M+(v−v0)y /N ]

= F (u −u 0,v − v0).
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Problem 4.20

The following are proofs of some of the properties in Table 4.1. Proofs of the
other properties are given in Chapter 4. Recall that when we refer to a function
as imaginary, its real part is zero. We use the term complex to denote a function
whose real and imaginary parts are not zero. We prove only the forward part the
Fourier transform pairs. Similar techniques are used to prove the inverse part.

(a) Property 2: If f (x ,y ) is imaginary, f (x ,y )⇔ F ∗(−u ,−v ) = −F (u ,v ). Proof:
Because f (x ,y ) is imaginary, we can express it as j g (x ,y ), where g (x ,y ) is a real
function. Then the proof is as follows:

F ∗(−u − v ) =

⎡
⎢⎣M−1∑

x=0

N−1∑
y=0

j g (x ,y )e j 2π(u x/M+v y /N )

⎤
⎥⎦
∗

=
M−1∑
x=0

N−1∑
y=0

−j g (x ,y )e−j 2π(u x/M+v y /N )

= −
M−1∑
x=0

N−1∑
y=0

�
j g (x ,y )

	
e−j 2π(u x/M+v y /N )

= −
M−1∑
x=0

N−1∑
y=0

f (x ,y )e−j 2π(u x/M+v y /N )

= −F (u ,v ).

(b) Property 4: If f (x ,y ) is imaginary, then R(u ,v ) is odd and I (u ,v ) is even.
Proof: F is complex, so it can be expressed as

F (u ,v ) = real [F (u ,v )] + j imag [F (u ,v )]

= R(u ,v )+ j I (u ,v ).

Then,−F (u ,v ) =−R(u ,v )− j I (u ,v ) and F ∗(−u ,−v ) = R(−u ,−v )− j I (−u ,−v ).
But, because f (x ,y ) is imaginary, F ∗(−u ,−v ) = −F (u ,v ) (see Property 2). It
then follows from the previous two equations that R(u ,v ) =−R(−u ,−v ) (i.e., R
is odd) and I (u ,v ) = I (−u ,−v ) (I is even).

(d) Property 7: When f (x ,y ) is complex, f ∗(x ,y )⇔ F ∗(−u ,−v ). Proof:
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ℑ� f ∗(x ,y )
	
=

M−1∑
x=0

N−1∑
y=0

f ∗(x ,y )e−j 2π(u x/M+v y /N )

=

⎡
⎢⎣M−1∑

x=0

N−1∑
y=0

f (x ,y )e j 2π(u x/M+v y /N )

⎤
⎥⎦
∗

= F ∗(−u ,−v ).

(g) Property 11: If f (x ,y ) is imaginary and odd, then F (u ,v ) is real and odd, and
conversely. Proof: If f (x ,y ) is imaginary, we know that the real part of F (u ,v )
is odd and its imaginary part is even. If we can show that the imaginary part is
zero, then we will have the proof for this property. As above,

F (u ,v ) =
M−1∑
x=0

N−1∑
y=0

[j odd]
�
(even)(even)− 2j (even)(odd)− (odd)(odd)

	

=
M−1∑
x=0

N−1∑
y=0

[j odd][even− j odd][even− j odd]

= j
M−1∑
x=0

N−1∑
y=0

[(odd)(even)]+ 2
M−1∑
x=0

N−1∑
y=0

[(even)(even)]

−j
M−1∑
x=0

N−1∑
y=0

[(odd)(even)]

= real

where the last step follows from Eq. (4.6-13).

Problem 4.21
Recall that the reason for padding is to establish a “buffer” between the periods
that are implicit in the DFT. Imagine the image on the left being duplicated in-
finitely many times to cover the x y -plane. The result would be a checkerboard,
with each square being in the checkerboard being the image (and the black ex-
tensions). Now imagine doing the same thing to the image on the right. The
results would be identical. Thus, either form of padding accomplishes the same
separation between images, as desired.

Problem 4.22
Unless all borders on of an image are black, padding the image with 0s intro-
duces significant discontinuities (edges) at one or more borders of the image.
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These can be strong horizontal and vertical edges. These sharp transitions in
the spatial domain introduce high-frequency components along the vertical and
horizontal axes of the spectrum.

Problem 4.23
(a) The averages of the two images are computed as follows:

f̄ (x ,y ) =
1

M N

M−1∑
x=0

N−1∑
y=0

f (x ,y )

and

f̄ p (x ,y ) =
1

PQ

P−1∑
x=0

Q−1∑
y=0

f p (x ,y )

=
1

PQ

M−1∑
x=0

N−1∑
y=0

f (x ,y )

=
M N

PQ
f̄ (x ,y )

where the second step is result of the fact that the image is padded with 0s. Thus,
the ratio of the average values is

r =
PQ

M N

Thus, we see that the ratio increases as a function of PQ, indicating that the
average value of the padded image decreases as a function of PQ. This is as
expected; padding an image with zeros decreases its average value.

Problem 4.25
(a) From Eq. (4.4-10) and the definition of the 1-D DFT,

ℑ� f (x ) h(x )
	
=

M−1∑
x=0

f (x ) h(x )e−j 2πu x/M

=
M−1∑
x=0

M−1∑
m=0

f (m )h(x −m )e−j 2πu x/M

=
M−1∑
m=0

f (m )
M−1∑
x=0

h(x −m )e−j 2πu x/M
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but
M−1∑
x=0

h(x −m )e−j 2πu x/M = ℑ[h(x −m )] =H (u )e−j 2πm u /M

where the last step follows from Eq. (4.6-4). Substituting this result into the
previous equation yields

ℑ� f (x ) h(x )
	
=

M−1∑
m=0

f (m )e−j 2πm u /M H (u )

= F (u )H (u ).

The other part of the convolution theorem is done in a similar manner.

(c) Correlation is done in the same way, but because of the difference in sign in
the argument of h the result will be a conjugate:

ℑ� f (x ,y ) h(x ,y )
	
=

M−1∑
x=0

N−1∑
y=0

f (x ,y ) h(x ,y )e−j 2π(u x/M+v y /N )

=
M−1∑
x=0

N−1∑
y=0

⎡
⎣M−1∑

m=0

N−1∑
n=0

f (m ,n )h(x +m ,y +n )

⎤
⎦

×e−j 2π(u x/M+v y /N )

=
M−1∑
m=0

N−1∑
n=0

f (m ,n )
M−1∑
x=0

N−1∑
y=0

h(x +m ,y +n )

×e−j 2π(u x/M+v y /N )

=
M−1∑
m=0

N−1∑
n=0

f (m ,n )e j 2π(u m/M+v n/N )H (u ,v )

= F ∗(u ,v )H (u ,v ).

(d) We begin with one variable:

ℑ
�

d f (z )
d z

�
=

∫ ∞
−∞

d f (z )
d z

e−j 2πνz d z

Integration by parts has the following general form,∫
s d w = s w −

∫
w d s .

Let s = e−j 2πνz and w = f (z ). Then, d w /d z = d f (z )/d z or

d w =
d f (z )

d z
d z and d s = (−j 2πν )e−j 2πνz d z
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so it follows that

ℑ
�

d f (z )
d z

�
=

∫ ∞
−∞

d f (z )
d z

e−j 2πνz d z

= f (z ) e−j 2πνz
∞
∞−

∫ ∞
−∞

f (z )(−j 2πν )e−j 2πνz d z

= (j 2πν )

∫ ∞
−∞

f (z )e−j 2πνz d z

= (j 2πν )F (ν )

because f (±∞) = 0 by assumption (see Table 4.3). Consider next the second
derivative. Define g (z ) = d f (z )/d z . Then

ℑ
�

d g (z )
d z

�
= (j 2πν )G (ν )

where G (ν ) is the Fourier transform of g (z ). But g (z ) = d f (z )/d z , so G (ν ) =
(j 2πν )F (ν ), and

ℑ
�

d 2 f (z )
d z 2

�
= (j 2πν )2F (ν ).

Continuing in this manner would result in the expression

ℑ
�

d n f (z )
d z n

�
= (j 2πν )n F (ν ).

If we now go to 2-D and take the derivative of only one variable, we would get the
same result as in the preceding expression, but we have to use partial derivatives
to indicate the variable to which differentiation applies and, instead of F (μ), we
would have F (μ,ν ). Thus,

ℑ
�
∂ n f (t ,z )
∂ z n

�
= (j 2πν )n F (μ,ν ).

Define g (t ,z ) = ∂ n f (t ,z )/∂ t n , then

ℑ
�
∂ m g (t ,z )
∂ t m

�
= (j 2πμ)m G (μ,ν ).

But G(μ,ν ) is the transform of g (t ,z ) = ∂ n f (t ,z )/∂ t n , which we know is equal
to (j 2πμ)n F (μ,ν ). Therefore, we have established that

ℑ
��
∂

∂ t

�m �
∂

∂ z

�n

f (t ,z )
�
= (j 2πμ)m (j 2πν )n F (μ,ν ).
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Because the Fourier transform is unique, we know that the inverse transform
of the right of this equation would give the left, so the equation constitutes a
Fourier transform pair (keep in mind that we are dealing with continuous vari-
ables).

Problem 4.26

(b) As the preceding derivation shows, the Laplacian filter applies to continuous
variables. We can generate a filter for using with the DFT simply by sampling
this function:

H (u ,v ) =−4π2(u 2+ v 2)

for u = 0,1,2, . . . ,M − 1 and v = 0,1,2, . . . ,N − 1. When working with centered
transforms, the Laplacian filter function in the frequency domain is expressed
as

H (u ,v ) =−4π2([u −M/2]2+[v −N /2]2).

In summary, we have the following Fourier transform pair relating the Laplacian
in the spatial and frequency domains:

∇2 f (x ,y )⇔−4π2([u −M/2]2+[v −N /2]2)F (u ,v )

where it is understood that the filter is a sampled version of a continuous func-
tion.

(c) The Laplacian filter is isotropic, so its symmetry is approximated much closer
by a Laplacian mask having the additional diagonal terms, which requires a −8
in the center so that its response is 0 in areas of constant intensity.

Problem 4.27
(a) The spatial average (excluding the center term) is

g (x ,y ) =
1

4

�
f (x ,y + 1)+ f (x + 1,y )+ f (x − 1,y )+ f (x ,y − 1)

	
.

From property 3 in Table 4.3,

G (u ,v ) =
1

4

�
e j 2πv /N + e j 2πu /M + e−j 2πu /M + e−j 2πv /N


F (u ,v )

= H (u ,v )F (u ,v )

where

H (u ,v ) =
1

2
[cos(2πu /M )+ cos(2πv /N )]
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is the filter transfer function in the frequency domain.

(b) To see that this is a lowpass filter, it helps to express the preceding equation
in the form of our familiar centered functions:

H (u ,v ) =
1

2
[cos(2π[u −M/2])/M )+ cos(2π[v −N /2]/N )] .

Consider one variable for convenience. As u ranges from 0 to M − 1, the value
of cos(2π[u −M/2]/M ) starts at −1, peaks at 1 when u = M/2 (the center of
the filter) and then decreases to −1 again when u =M . Thus, we see that the
amplitude of the filter decreases as a function of distance from the origin of the
centered filter, which is the characteristic of a lowpass filter. A similar argument
is easily carried out when considering both variables simultaneously.

Problem 4.30
The answer is no. The Fourier transform is a linear process, while the square
and square roots involved in computing the gradient are nonlinear operations.
The Fourier transform could be used to compute the derivatives as differences
(as in Problem 4.28), but the squares, square root, or absolute values must be
computed directly in the spatial domain.

Problem 4.31
We want to show that

ℑ−1
�

Ae−(μ2+ν2)/2σ2
= A2πσ2e−2π2σ2(t 2+z 2).

The explanation will be clearer if we start with one variable. We want to show
that, if

H (μ) = e−μ2/2σ2

then

h(t ) = ℑ−1 �H (μ)
	

=

∫ ∞
−∞

e−μ2/2σ2
e j 2tμt dμ

=
�

2πσ−2π2σ2t 2
.

We can express the integral in the preceding equations as

h(t ) =

∫ ∞
−∞

e−
1

2σ2 [μ2−j 4πσ2μt ]dμ.
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Making use of the identity

e− (2π)
2σ2t 2

2 e
(2π)2σ2t 2

2 = 1

in the preceding integral yields

h(t ) = e− (2π)
2σ2t 2

2

∫ ∞
−∞

e−
1

2σ2 [μ
2−j 4πσ2μt−(2π)2σ4t 2]dμ.

= e− (2π)
2σ2t 2

2

∫ ∞
−∞

e−
1

2σ2 [μ−j 2πσ2t ]2dμ.

Next, we make the change of variables r = μ− j 2πσ2t . Then, d r = dμ and the
preceding integral becomes

h(t ) = e− (2π)
2σ2t 2

2

∫ ∞
−∞

e−
r 2

2σ2 d r.

Finally, we multiply and divide the right side of this equation by
�

2πσand ob-
tain

h(t ) =
�

2πσe− (2π)
2σ2t 2

2

⎡
⎣ 1�

2πσ

∫ ∞
−∞

e−
r 2

2σ2 d r

⎤
⎦ .

The expression inside the brackets is recognized as the Gaussian probability
density function whose value from -∞ to∞ is 1. Therefore,

h(t ) =
�

2πσe−2π2σ2t 2
.

With the preceding results as background, we are now ready to show that

h(t ,z ) = ℑ−1
�

Ae−(μ2+ν2)/2σ2
= A2πσ2e−2π2σ2(t 2+z 2).

By substituting directly into the definition of the inverse Fourier transform we
have:

h(t ,z ) =

∫ ∞
−∞

∫ ∞
−∞

Ae−(μ2+ν2)/2σ2
e j 2π(μt+νz )dμdν

=

∫ ∞
−∞

⎡
⎣∫ ∞
−∞

Ae

�
− μ2

2σ2 +j 2πμt
�

dμ

⎤
⎦e

�− ν2

2σ2 +j 2πνz
�

dν .
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The integral inside the brackets is recognized from the previous discussion to be
equal to A

�
2πσe−2π2σ2t 2 . Then, the preceding integral becomes

h(t ,z ) =A
�

2πσe−2π2σ2t 2

∫ ∞
−∞

e
�
− ν2

2σ2 +j 2πνz
�

dν .

We now recognize the remaining integral to be equal to
�

2πσe−2π2σ2z 2 , from
which we have the final result:

h(t ,z ) =
�

A
�

2πσe−2π2σ2t 2���
2πσe−2π2σ2z 2�

= A2πσ2e−2π2σ2(t 2+z 2).

Problem 4.35
With reference to Eq. (4.9-1), all the highpass filters in discussed in Section 4.9
can be expressed a 1 minus the transfer function of lowpass filter (which we
know do not have an impulse at the origin). The inverse Fourier transform of 1
gives an impulse at the origin in the highpass spatial filters.

Problem 4.37
(a) One application of the filter gives:

G (u ,v ) = H (u ,v )F (u ,v )

= e−D2(u ,v )/2D2
0 F (u ,v ).

Similarly, K applications of the filter would give

GK (u ,v ) = e−K D2(u ,v )/2D2
0 F (u ,v ).

The inverse DFT of GK (u ,v ) would give the image resulting from K passes of
the Gaussian filter. If K is “large enough,” the Gaussian LPF will become a notch
pass filter, passing only F (0,0). We know that this term is equal to the average
value of the image. So, there is a value of K after which the result of repeated
lowpass filtering will simply produce a constant image. The value of all pixels
on this image will be equal to the average value of the original image. Note that
the answer applies even as K approaches infinity. In this case the filter will ap-
proach an impulse at the origin, and this would still give us F (0,0) as the result
of filtering.
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Problem 4.41
Because M = 2n , we can write Eqs. (4.11-16) and (4.11-17) as

m (n ) =
1

2
M n

and
a (n ) =M n .

Proof by induction begins by showing that both equations hold for n = 1:

m (1) =
1

2
(2)(1) = 1 and a (1) = (2)(1) = 2.

We know these results to be correct from the discussion in Section 4.11.3. Next,
we assume that the equations hold for n . Then, we are required to prove that
they also are true for n + 1. From Eq. (4.11-14),

m (n + 1) = 2m (n )+ 2n .

Substituting m (n ) from above,

m (n + 1) = 2

�
1

2
M n

�
+ 2n

= 2

�
1

2
2n n

�
+ 2n

= 2n (n + 1)

=
1

2

�
2n+1

�
(n + 1).

Therefore, Eq. (4.11-16) is valid for all n .
From Eq. (4.11-17),

a (n + 1) = 2a (n )+ 2n+1.

Substituting the above expression for a (n ) yields

a (n + 1) = 2M n + 2n+1

= 2(2n n )+ 2n+1

= 2n+1(n + 1)

which completes the proof.
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Chapter 5

Problem Solutions

Problem 5.1
The solutions are shown in Fig. P5.1, from left to right.

Figure P5.1

Problem 5.3
The solutions are shown in Fig. P5.3, from left to right.

Figure P5.3

39
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Problem 5.5
The solutions are shown in Fig. P5.5, from left to right.

Figure P5.5

Problem 5.7
The solutions are shown in Fig. P5.7, from left to right.

Figure P5.7

Problem 5.9
The solutions are shown in Fig. P5.9, from left to right.

Figure P5.9
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Problem 5.10
(a) The key to this problem is that the geometric mean is zero whenever any
pixel is zero. Draw a profile of an ideal edge with a few points valued 0 and a few
points valued 1. The geometric mean will give only values of 0 and 1, whereas
the arithmetic mean will give intermediate values (blur).

Problem 5.12
A bandpass filter is obtained by subtracting the corresponding bandreject filter
from 1:

HBP(u ,v ) = 1−HBR(u ,v ).

Then:

(a) Ideal bandpass filter:

HIBP(u ,v ) =

⎧
⎨
⎩

0 if D(u ,v )<D0− W
2

1 if D0− W
2
≤D(u ,v )≤D0+ W

2
.

0 D(u ,v )>D0+ W
2

(b) Butterworth bandpass filter:

HBBP(u ,v ) = 1− 1

1+
 

D(u ,v )W
D2(u ,v )−D2

0

!2n

=

 
D(u ,v )W

D2(u ,v )−D2
0

!2n

1+
 

D(u ,v )W
D2(u ,v )−D2

0

!2n .

(c) Gaussian bandpass filter:

HGBP(u ,v ) = 1−
⎡
⎢⎣1− e

− 1
2

�
D2 (u ,v )−D2

0
D(u ,v )W

�2
⎤
⎥⎦

= e
− 1

2

�
D2 (u ,v )−D2

0
D(u ,v )W

�2
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Problem 5.14
We proceed as follows:

F (u ,v ) =

∫∫ ∞
−∞

f (x ,y )e−j 2π(u x +v y )d x d y

=

∫∫ ∞
−∞

A sin(u 0x + v0y )e−j 2π(u x +v y )d x d y .

Using the exponential definition of the sine function,

sinθ =
1

2j

�
e j θ − e−j θ

�

gives us

F (u ,v ) =
−j A

2

∫∫ ∞
−∞

�
e j (u 0x +v0y )− e−j (u 0x +v0y )


e−j 2π(u x +v y )d x d y

=
−j A

2

⎡
⎣∫∫ ∞

−∞
e j 2π(u 0x/2π+v0y /2π)e−j 2π(u x +v y )d x d y

⎤
⎦−

j A

2

⎡
⎣∫∫ ∞

−∞
e−j 2π(u 0x/2π+v0y /2π)e−j 2π(u x +v y )d x d y

⎤
⎦ .

These are the Fourier transforms of the functions

1× e j 2π(u 0x/2π+v0y /2π)

and
1× e−j 2π(u 0x/2π+v0y /2π)

respectively. The Fourier transform of the 1 gives an impulse at the origin, and
the exponentials shift the origin of the impulse, as discussed in Section 4.6.3 and
Table 4.3. Thus,

F (u ,v ) =
−j A

2

 
δ
�

u − u 0

2π
,v − v0

2π

�
−δ

�
u +

u 0

2π
,v +

v0

2π

�!
.

Problem 5.16
From Eq. (5.5-13),

g (x ,y ) =

∫∫ ∞
−∞

f (α,β )h(x −α,y −β )dαdβ .
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It is given that f (x ,y ) = δ(x −a ), so f (α,β ) = δ(α−a ). Then, using the impulse
response given in the problem statement,

g (x ,y ) =

∫ ∫ ∞
−∞
δ(α−a )e−

"
(x−α)2+(y−β)2

#
dαdβ

=

∫∫ ∞
−∞
δ(α−a )e−[(x−α)2] e−

"
(y−β)2

#
dαdβ

=

∫ ∞
−∞
δ(α−a )e−[(x−α)2]dα

∫ ∞
−∞

e
−
"
(y−β)2

#
dβ

= e−[(x−a )2]
∫ ∞
−∞

e
−"(y−β)2#dβ

where we used the fact that the integral of the impulse is nonzero only when
α= a . Next, we note that

∫ ∞
−∞

e
−"(y−β)2#dβ =

∫ ∞
−∞

e
−"(β−y )2

#
dβ

which is in the form of a constant times a Gaussian density with variance σ2 =
1/2 or standard deviationσ= 1/

�
2. In other words,

e
−
"
(β−y )2

#
=
$

2π(1/2)

⎡
⎣ 1$

2π(1/2)
e
−(1/2)

�
(β−y )2
(1/2)

�⎤
⎦ .

The integral from minus to plus infinity of the quantity inside the brackets is 1,
so

g (x ,y ) =
�
πe−[(x−a )2]

which is a blurred version of the original image.
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Problem 5.18
Following the procedure in Section 5.6.3,

H (u ,v ) =

∫ T

0

e−j 2πu x0(t )d t

=

∫ T

0

e−j 2πu [(1/2)a t 2]d t

=

∫ T

0

e−jπu a t 2
d t

=

∫ T

0

�
cos(πu a t 2)− j sin(πu a t 2)


d t

=

%
T 2

2πu a T 2

�
C (
�
πu a T )− j S(

�
πu a T )



where

C (z ) =

&
2π

T

∫ z

0

cos t 2d t

and

S(z ) =

&
2

π

∫ z

0

sin t 2d t .

These are Fresnel cosine and sine integrals. They can be found, for example,
the Handbook of Mathematical Functions, by Abramowitz, or other similar ref-
erence.

Problem 5.20
Measure the average value of the background. Set all pixels in the image, ex-
cept the cross hairs, to that intensity value. Denote the Fourier transform of
this image by G (u ,v ). Because the characteristics of the cross hairs are given
with a high degree of accuracy, we can construct an image of the background
(of the same size) using the background intensity levels determined previously.
We then construct a model of the cross hairs in the correct location (determined
from the given image) using the dimensions provided and intensity level of the
cross hairs. Denote by F (u ,v ) the Fourier transform of this new image . The
ratio G (u ,v )/F (u ,v ) is an estimate of the blurring function H (u ,v ). In the likely
event of vanishing values in F (u ,v ), we can construct a radially-limited filter us-
ing the method discussed in connection with Fig. 5.27. Because we know F (u ,v )
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and G (u ,v ), and an estimate of H (u ,v ), we can refine our estimate of the blur-
ring function by substituting G and H in Eq. (5.8-3) and adjusting K to get as
close as possible to a good result for F (u ,v ) (the result can be evaluated visually
by taking the inverse Fourier transform). The resulting filter in either case can
then be used to deblur the image of the heart, if desired.

Problem 5.22
This is a simple plug in problem. Its purpose is to gain familiarity with the vari-
ous terms of the Wiener filter. From Eq. (5.8-3),

HW(u ,v ) =

'
1

H (u ,v )
|H (u ,v )|2
|H (u ,v )|2+K

(

where

|H (u ,v )|2 = H ∗(u ,v )H (u ,v )

= H 2(u ,v )

= 64π6σ4(u 2+ v 2)2e−4π2σ2(u 2+v 2).

Then,

HW(u ,v ) =−
⎡
⎣ −8π3σ2(u 2+ v 2)e−2π2σ2(u 2+v 2)�

64π6σ4(u 2+ v 2)2e−4π2σ2(u 2+v 2)

+K

⎤
⎦ .

Problem 5.25
(a) It is given that ��F̂ (u ,v )

��2 = |R(u ,v )|2 |G (u ,v )|2 .

From Problem 5.24 (recall that the image and noise are assumed to be uncorre-
lated), ��F̂ (u ,v )

��2 = |R(u ,v )|2 �|H (u ,v )|2 |F (u ,v )|2+ |N (u ,v )|2 .

Forcing
��F̂ (u ,v )

��2 to equal |F (u ,v )|2 gives

R(u ,v ) =

' |F (u ,v )|2
|H (u ,v )|2 |F (u ,v )|2+ |N (u ,v )|2

(1/2

.

Problem 5.27
The basic idea behind this problem is to use the camera and representative coins
to model the degradation process and then utilize the results in an inverse filter
operation. The principal steps are as follows:
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1. Select coins as close as possible in size and content as the lost coins. Select
a background that approximates the texture and brightness of the photos
of the lost coins.

2. Set up the museum photographic camera in a geometry as close as possi-
ble to give images that resemble the images of the lost coins (this includes
paying attention to illumination). Obtain a few test photos. To simplify
experimentation, obtain a TV camera capable of giving images that re-
semble the test photos. This can be done by connecting the camera to
an image processing system and generating digital images, which will be
used in the experiment.

3. Obtain sets of images of each coin with different lens settings. The re-
sulting images should approximate the aspect angle, size (in relation to
the area occupied by the background), and blur of the photos of the lost
coins.

4. The lens setting for each image in (3) is a model of the blurring process
for the corresponding image of a lost coin. For each such setting, remove
the coin and background and replace them with a small, bright dot on a
uniform background, or other mechanism to approximate an impulse of
light. Digitize the impulse. Its Fourier transform is the transfer function of
the blurring process.

5. Digitize each (blurred) photo of a lost coin, and obtain its Fourier trans-
form. At this point, we have H (u ,v ) and G (u ,v ) for each coin.

6. Obtain an approximation to F (u ,v ) by using a Wiener filter. Equation
(5.8-3) is particularly attractive because it gives an additional degree of
freedom (K ) for experimenting.

7. The inverse Fourier transform of each approximation F̂ (u ,v ) gives the re-
stored image for a coin. In general, several experimental passes of these
basic steps with various different settings and parameters are required to
obtain acceptable results in a problem such as this.

Problem 5.28
(b) The solution is shown in the following figure.The solutions are shown in Fig.
P5.28. In each figure the horizontal axis isρ and the vertical axis is θ , with θ = 0◦
at the bottom and going up to 180◦. The fat lobes occur at 45◦ and the single
point of intersection is at 135◦. The intensity at that point is double the intensity
of all other points.
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Figure P5.28

Problem 5.30
(a) From Eq. (5.11-3),

ℜ
 f (x ,y )
�
= g (ρ,θ ) =

∫ ∞
−∞

∫ ∞
−∞

f (x ,y )δ(x cosθ + y sinθ −ρ)d x d y

=

∫ ∞
−∞

∫ ∞
−∞
δ(x ,y )δ(x cosθ + y sinθ −ρ)d x d y

=

∫ ∞
−∞

∫ ∞
−∞

1×δ(0−ρ)d x d y

=

)
1 ifρ = 0
0 otherwise.

where the third step follows from the fact thatδ(x ,y ) is zero if x and/or y are not
zero.

Problem 5.31

(a) From Section 2.6, we know that an operator, O, is linear if O(a f 1 + b f 2) =
aO(f 1)+bO(f 2). From the definition of the Radon transform in Eq. (5.11-3),

O(a f 1+b f 2) =

∫ ∞
−∞

∫ ∞
−∞
(a f 1+b f 2)δ(x cosθ + y sinθ −ρ)d x d y

= a

∫ ∞
−∞

∫ ∞
−∞

f 1δ(x cosθ + y sinθ −ρ)d x d y

+b

∫ ∞
−∞

∫ ∞
−∞

f 2δ(x cosθ + y sinθ −ρ)d x d y

= aO(f 1)+bO(f 2)

thus showing that the Radon transform is a linear operation.
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(c) From Chapter 4 (Problem 4.11), we know that the convolution of two func-
tion f and h is defined as

c (x ,y ) = f (x ,y ) h(x ,y )

=

∫ ∞
−∞

∫ ∞
−∞

f (α,β )h(x −α,y −β )dαdβ .

We want to show that ℜ{c} = ℜ
 f
� ℜ{h} ,where ℜ denotes the Radon trans-

form. We do this by substituting the convolution expression into Eq. (5.11-3).
That is,

ℜ{c} =
∫ ∞
−∞

∫ ∞
−∞

⎡
⎣∫ ∞
−∞

∫ ∞
−∞

f (α,β )h(x −α,y −β )dαdβ

⎤
⎦

×δ(x cosθ + y sinθ −ρ)d x d y

=

∫
α

∫
β

f (α,β )

×
⎡
⎣∫

x

∫
y

h(x −α,y −β )δ(x cosθ + y sinθ −ρ)d x d y

⎤
⎦dαdβ

where we used the subscripts in the integrals for clarity between the integrals
and their variables. All integrals are understood to be between−∞ and∞. Work-
ing with the integrals inside the brackets with x ′ = x −α and y ′ = y −β we have∫

x

∫
y

h(x −α,y −β )δ(x cosθ + y sinθ −ρ)d x d y

=
∫

x ′
∫

y ′ h(x
′,y ′)δ(x ′ cosθ + y ′ sinθ − [ρ−αcosθ −β sinθ ])d x ′d y ′

=ℜ{h} (ρ−αcosθ −β sinθ ,θ ).

We recognize the second integral as the Radon transform of h, but instead of
being with respect to ρ and θ , it is a function of ρ − αcosθ − β sinθ and θ .
The notation in the last line is used to indicate “the Radon transform of h as a
function of ρ−αcosθ −β sinθ and θ .” Then,

ℜ{c} =
∫
α

∫
β

f (α,β )

×
⎡
⎣∫

x

∫
y

h(x −α,y −β )δ(x cosθ + y sinθ −ρ)d x d y

⎤
⎦dαdβ

=

∫
α

∫
β

f (α,β )ℜ{h} (ρ−ρ′,θ )dαdβ
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where ρ′ = αcosθ +β sinθ . Then, based on the properties of the impulse, we
can write

ℜ{h} (ρ−ρ′,θ ) =
∫
ρ′
ℜ{h} (ρ−ρ′,θ )δ(αcosθ +β sinθ −ρ′)dρ′.

Then,

ℜ{c}=
∫
α

∫
β

f (α,β )
�ℜ{h} (ρ−ρ′,θ )	dαdβ

=

∫
α

∫
β

f (α,β )

×
⎡
⎣∫

ρ′
ℜ{h} (ρ−ρ′,θ )δ(αcosθ +β sinθ −ρ′)dρ′

⎤
⎦dαdβ

=

∫
ρ′
ℜ{h} (ρ−ρ′,θ )

⎡
⎣∫

α

∫
β

f (α,β )δ(αcosθ +β sinθ −ρ′)dαdβ

⎤
⎦dρ′

=

∫
ρ′
ℜ{h} (ρ−ρ′,θ )ℜ
 f

�
(ρ′,θ )dρ′

= ℜ
 f
� ℜ{h}

where the fourth step follows from the definition of the Radon transform and the
fifth step follows from the definition of convolution. This completes the proof.

Problem 5.33
The argument of function s in Eq.(5.11-24) may be written as:

r cos(β +α−ϕ)−D sinα= r cos(β −ϕ)cosα− [r sin(β −ϕ)+D]sinα.

From Fig. 5.47,

R cosα′ = R + r sin(β −ϕ)
R sinα′ = r cos(β −ϕ).

Then, substituting in the earlier expression,

r cos(β +α−ϕ)−R sinα = R sinα′ cosα−R cosα′ sinα

= R(sinα′ cosα− cosα′ sinα)

= R sin(α′ −α)
which agrees with Eq. (5.11-25).
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Chapter 6

Problem Solutions

Problem 6.2
Denote by c the given color, and let its coordinates be denoted by (x0,y0). The
distance between c and c1 is

d (c ,c1) =
�
(x0−x1)2+

�
y0− y1

�2
1/2

.

Similarly the distance between c1 and c2

d (c1,c2) =
�
(x1−x2)2+

�
y1− y2

�2
1/2

.

The percentage p1 of c1 in c is

p1 =
d (c1,c2)−d (c ,c1)

d (c1,c2)
× 100.

The percentage p2 of c2 is simply p2 = 100−p1. In the preceding equation we
see, for example, that when c = c1, then d (c ,c1) = 0 and it follows that p1 = 100%
and p2 = 0%. Similarly, when d (c ,c1) = d (c1,c2), it follows that p1 = 0% and p2 =
100%. Values in between are easily seen to follow from these simple relations.

Problem 6.4
Use color filters that are sharply tuned to the wavelengths of the colors of the
three objects. With a specific filter in place, only the objects whose color cor-
responds to that wavelength will produce a significant response on the mono-
chrome camera. A motorized filter wheel can be used to control filter position
from a computer. If one of the colors is white, then the response of the three
filters will be approximately equal and high. If one of the colors is black, the
response of the three filters will be approximately equal and low.
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Figure P6.6

Problem 6.6
For the image given, the maximum intensity and saturation requirement means
that the RGB component values are 0 or 1. We can create Table P6.6 with 0 and
255 representing black and white, respectively. Thus, we get the monochrome
displays shown in Fig. P6.6.

Problem 6.8
(a) All pixel values in the Red image are 255. In the Green image, the first column
is all 0’s; the second column all 1’s; and so on until the last column, which is
composed of all 255’s. In the Blue image, the first row is all 255’s; the second row
all 254’s, and so on until the last row which is composed of all 0’s.

Problem 6.10
Equation (6.2-1) reveals that each component of the CMY image is a function of
a single component of the corresponding RGB image—C is a function of R , M of
G , and Y of B . For clarity, we will use a prime to denote the CMY components.
From Eq. (6.5-6), we know that

si = k ri

for i = 1,2,3 (for the R , G , and B components). And from Eq. (6.2-1), we know
that the CMY components corresponding to the ri and si (which we are denoting
with primes) are

r ′i = 1− ri

and

s ′i = 1− si .
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Thus,

ri = 1− r ′i
and

s ′i = 1− si = 1−k ri = 1−k
�

1− r ′i
�

so that

s ′i = k r ′i +(1−k ) .

Problem 6.12
Using Eqs. (6.2-2) through (6.2-4), we get the results shown in Table P6.12. Note
that, in accordance with Eq. (6.2-2), hue is undefined when R =G = B since θ =
cos−1 (0/0). In addition, saturation is undefined when R =G = B = 0 since Eq.
(6.2-3) yields S = 1− 3min (0)/(3× 0) = 1− (0/0). Thus, we get the monochrome
display shown in Fig. P6.12.

Table P6.12
Color R G B H S I Mono H Mono S Mono I
Black 0 0 0 – 0 0 – – 0
Red 1 0 0 0 1 0.33 0 255 85

Yellow 1 1 0 0.17 1 0.67 43 255 170
Green 0 1 0 0.33 1 0.33 85 255 85
Cyan 0 1 1 0.5 1 0.67 128 255 170
Blue 0 0 1 0.67 1 0.33 170 255 85

Magenta 1 0 1 0.83 1 0.67 213 255 170
White 1 1 1 – 0 1 – 0 255

Gray 0.5 0.5 0.5 – 0 0.5 – 0 128

Figure P6.12
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Problem 6.14
There are two important aspects to this problem. One is to approach it in the
HSI space and the other is to use polar coordinates to create a hue image whose
values grow as a function of angle. The center of the image is the middle of what-
ever image area is used. Then, for example, the values of the hue image along
a radius when the angle is 0◦ would be all 0’s. Then the angle is incremented
by, say, one degree, and all the values along that radius would be 1’s, and so on.
Values of the saturation image decrease linearly in all radial directions from the
origin. The intensity image is just a specified constant. With these basics in
mind it is not difficult to write a program that generates the desired result.

Problem 6.16
(a) It is given that the colors in Fig. 6.16(a) are primary spectrum colors. It also is
given that the gray-level images in the problem statement are 8-bit images. The
latter condition means that hue (angle) can only be divided into a maximum
number of 256 values. Because hue values are represented in the interval from
0◦ to 360◦ this means that for an 8-bit image the increments between contiguous
hue values are now 360/255. Another way of looking at this is that the entire [0,
360] hue scale is compressed to the range [0, 255]. Thus, for example, yellow
(the first primary color we encounter), which is 60◦ now becomes 43 (the closest
integer) in the integer scale of the 8-bit image shown in the problem statement.
Similarly, green, which is 120◦ becomes 85 in this image. From this we easily
compute the values of the other two regions as being 170 and 213. The region in
the middle is pure white [equal proportions of red green and blue in Fig. 6.61(a)]
so its hue by definition is 0. This also is true of the black background.

Problem 6.18
Using Eq. (6.2-3), we see that the basic problem is that many different colors
have the same saturation value. This was demonstrated in Problem 6.12, where
pure red, yellow, green, cyan, blue, and magenta all had a saturation of 1. That
is, as long as any one of the RGB components is 0, Eq. (6.2-3) yields a saturation
of 1.

Consider RGB colors (1,0,0) and (0,0.59,0), which represent shades of red
and green. The HSI triplets for these colors [per Eq. (6.4-2) through (6.4-4)] are
(0,1,0.33) and (0.33,1,0.2), respectively. Now, the complements of the begin-
ning RGB values (see Section 6.5.2) are (0,1,1) and (1,0.41,1), respectively; the
corresponding colors are cyan and magenta. Their HSI values [per Eqs. (6.4-2)
through (6.4-4)] are (0.5,1,0.66) and (0.83,0.48,0.8), respectively. Thus, for the
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red, a starting saturation of 1 yielded the cyan “complemented” saturation of
1, while for the green, a starting saturation of 1 yielded the magenta “comple-
mented” saturation of 0.48. That is, the same starting saturation resulted in two
different “complemented” saturations. Saturation alone is not enough informa-
tion to compute the saturation of the complemented color.

Problem 6.20
The RGB transformations for a complement [from Fig. 6.33(b)] are:

si = 1− ri

where i = 1,2,3 (for the R , G , and B components). But from the definition of the
CMY space in Eq. (6.2-1), we know that the CMY components corresponding to
ri and si , which we will denote using primes, are

r ′i = 1− ri

s ′i = 1− si .

Thus,

ri = 1− r ′i
and

s ′i = 1− si = 1− (1− ri ) = 1− �1− �1− r ′i
��

so that

s ′ = 1− r ′i .

Problem 6.22
Based on the discussion is Section 6.5.4 and with reference to the color wheel
in Fig. 6.32, we can decrease the proportion of yellow by (1) decreasing yellow,
(2) increasing blue, (3) increasing cyan and magenta, or (4) decreasing red and
green.

Problem 6.24
The simplest approach conceptually is to transform every input image to the HSI
color space, perform histogram specification per the discussion in Section 3.3.2
on the intensity (I ) component only (leaving H and S alone), and convert the
resulting intensity component with the original hue and saturation components
back to the starting color space.
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Problem 6.27
(a) The cube is composed of six intersecting planes in RGB space. The general
equation for such planes is

a z R +b zG + c z B +d = 0

where a , b , c , and d are parameters and the z ’s are the components of any point
(vector) z in RGB space lying on the plane. If an RGB point z does not lie on the
plane, and its coordinates are substituted in the preceding equation, the equa-
tion will give either a positive or a negative value; it will not yield zero. We say
that z lies on the positive or negative side of the plane, depending on whether
the result is positive or negative. We can change the positive side of a plane by
multiplying its coefficients (except d ) by −1. Suppose that we test the point a
given in the problem statement to see whether it is on the positive or negative
side each of the six planes composing the box, and change the coefficients of
any plane for which the result is negative. Then, a will lie on the positive side of
all planes composing the bounding box. In fact all points inside the bounding
box will yield positive values when their coordinates are substituted in the equa-
tions of the planes. Points outside the box will give at least one negative (or zero
if it is on a plane) value. Thus, the method consists of substituting an unknown
color point in the equations of all six planes. If all the results are positive, the
point is inside the box; otherwise it is outside the box. A flow diagram is asked
for in the problem statement to make it simpler to evaluate the student’s line of
reasoning.
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Chapter 7

Problem Solutions

Problem 7.2

A mean approximation pyramid is created by forming 2×2 block averages. Since
the starting image is of size 4× 4, J = 2 and f

�
x ,y

�
is placed in level 2 of the

mean approximation pyramid. The level 1 approximation is (by taking 2×2 block
averages over f

�
x ,y

�
and subsampling)

'
3.5 5.5

11.5 13.5

(

and the level 0 approximation is similarly [8.5]. The completed mean approxi-
mation pyramid is

⎡
⎢⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎥⎦
'

3.5 5.5
11.5 13.5

(
[8.5] .

Pixel replication is used in the generation of the complementary prediction resid-
ual pyramid. Level 0 of the prediction residual pyramid is the lowest resolu-
tion approximation, [8.5]. The level 2 prediction residual is obtained by upsam-
pling the level 1 approximation and subtracting it from the level 2 approxima-
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tion (original image). Thus, we get⎡
⎢⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

3.5 3.5 5.5 5.5
3.5 3.5 5.5 5.5

11.5 11.5 13.5 13.5
11.5 11.5 13.5 13.5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5
−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5

⎤
⎥⎥⎥⎦ .

Similarly, the level 1 prediction residual is obtained by upsampling the level 0
approximation and subtracting it from the level 1 approximation to yield'

3.5 5.5
11.5 13.5

(
−
'

8.5 8.5
8.5 8.5

(
=

' −5 −3
3 5

(
.

The prediction residual pyramid is therefore⎡
⎢⎢⎢⎣
−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5
−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5

⎤
⎥⎥⎥⎦
' −5 −3

3 5

(
[8.5] .

Problem 7.3
The number of elements in a J + 1 level pyramid where N = 2J is bounded by
4
3 N 2 or 4

3

�
2J
�2 = 4

3 22J (see Section 7.1.1):

22J

+
1+

1

(4)1
+

1

(4)2
+ ...+

1

(4) J

,
≤ 4

3
22J

for J > 0. We can generate the following table:

J Pyramid Elements Compression Ratio
0 1 1
1 5 5/4 = 1.25
2 21 21/16 = 1.3125
3 85 85/64 = 1.328
...

...
...

∞ 4/3 = 1.33

All but the trivial case, J = 0, are expansions. The expansion factor is a function
of J and bounded by 4/3 or 1.33.
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Figure P7.7

Problem 7.7
Reconstruction is performed by reversing the decomposition process—that is,
by replacing the downsamplers with upsamplers and the analysis filters by their
synthesis filter counterparts, as Fig. P7.7 shows.

Problem 7.10

(a) The basis is orthonormal and the coefficients are computed by the vector
equivalent of Eq. (7.2-5):

α0 =
�

1�
2

1�
2

' 3
2

(

=
5
�

2

2

α1 =
�

1�
2
− 1�

2

' 3
2

(

=

�
2

2
so,

5
�

2

2
ϕ0+

�
2

2
ϕ1 =

5
�

2

2

' 1�
2

1�
2

(
+

�
2

2

' 1�
2− 1�

2

(

=

'
3
2

(
.
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Problem 7.13
From Eq. (7.2-19), we find that

ψ3,3(x ) = 23/2ψ(23x − 3)

= 2
�

2ψ(8x − 3)

and using the Haar wavelet function definition from Eq. (7.2-30), obtain the plot
in Fig. P7.13.

To expressψ3,3 (x ) as a function of scaling functions, we employ Eq. (7.2-28)
and the Haar wavelet vector defined in Example 7.6—that is, hψ(0) = 1/

�
2 and

hψ(1) =−1/
�

2. Thus we get

ψ (x ) =
∑

n

hψ (n )
�

2ϕ (2x −n )

so that

ψ(8x − 3) =
∑

n

hψ(n )
�

2ϕ(2[8x − 3]−n )

=
1�
2

�
2ϕ(16x − 6)+

�−1�
2

��
2ϕ(16x − 7)

=ϕ(16x − 6)−ϕ(16x − 7).

Then, sinceψ3,3 (x ) = 2
�

2ψ (8x − 3) from above, substitution gives

ψ3,3 = 2
�

2ψ(8x − 3)

= 2
�

2ϕ(16x − 6)− 2
�

2ϕ(16x − 7).

ψ    (x) = 2  2 ψ(8x-3)3, 3

0

2  2

0 3/8 1

-2  2

Figure P7.13
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2

2

Wϕ(2, n) = f(n)
   = {1, 4, -3, 0}

Wϕ(1, n) = {5/  2, -3/  2}

Wψ(1, n) = {-3/  2, -3/  2}{-1/  2, 1/  2}

{1/  2, 1/  2}

{-1/  2 , -3/  2, 7/  2, -3/  2, 0}

{1/  2 , 5/  2, 1/  2, -3/  2, 0}

�

�

Figure P7.19

Problem 7.17
Intuitively, the continuous wavelet transform (CWT) calculates a “resemblance
index” between the signal and the wavelet at various scales and translations.
When the index is large, the resemblance is strong; else it is weak. Thus, if a
function is similar to itself at different scales, the resemblance index will be sim-
ilar at different scales. The CWT coefficient values (the index) will have a char-
acteristic pattern. As a result, we can say that the function whose CWT is shown
is self-similar—like a fractal signal.

Problem 7.18

(b) The DWT is a better choice when we need a space saving representation that
is sufficient for reconstruction of the original function or image. The CWT is
often easier to interpret because the built-in redundancy tends to reinforce traits
of the function or image. For example, see the self-similarity of Problem 7.17.

Problem 7.19
The filter bank is the first bank in Fig. 7.19, as shown in Fig. P7.19:

Problem 7.21
(a) Input ϕ(n ) = {1,1,1,1,1,1,1,1} = ϕ0,0(n ) for a three-scale wavelet transform
with Haar scaling and wavelet functions. Since wavelet transform coefficients
measure the similarity of the input to the basis functions, the resulting transform
is

{Wϕ(0,0),Wψ(0,0),Wψ(1,0),Wψ(1,1),Wψ(2,0),Wψ(2,1),Wψ(2,2)
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Wψ(2,3)}= {2�2,0,0,0,0,0,0,0}.
The Wϕ(0,0) term can be computed using Eq. (7.3-5) with j0 = k = 0.

Problem 7.22
They are both multi-resolution representations that employ a single reduced-
resolution approximation image and a series of “difference” images. For the
FWT, these “difference” images are the transform detail coefficients; for the pyra-
mid, they are the prediction residuals.

To construct the approximation pyramid that corresponds to the transform
in Fig. 7.10(a), we will use the F W T−1 2-d synthesis bank of Fig. 7.24(c). First,
place the 64× 64 approximation “coefficients” from Fig. 7.10(a) at the top of the
pyramid being constructed. Then use it, along with 64× 64 horizontal, vertical,
and diagonal detail coefficients from the upper-left of Fig. 7.10(a), to drive the
filter bank inputs in Fig. 7.24(c). The output will be a 128× 128 approximation
of the original image and should be used as the next level of the approximation
pyramid. The 128×128 approximation is then used with the three 128×128 de-
tail coefficient images in the upper 1/4 of the transform in Fig. 7.10(a) to drive
the synthesis filter bank in Fig. 7.24(c) a second time—producing a 256×256 ap-
proximation that is placed as the next level of the approximation pyramid. This
process is then repeated a third time to recover the 512 × 512 original image,
which is placed at the bottom of the approximation pyramid. Thus, the approx-
imation pyramid would have 4 levels.

Problem 7.24
As can be seen in the sequence of images that are shown, the DWT is not shift
invariant. If the input is shifted, the transform changes. Since all original images
in the problem are 128× 128, they become the Wϕ(7,m ,n ) inputs for the FWT
computation process. The filter bank of Fig. 7.24(a) can be used with j + 1= 7.
For a single scale transform, transform coefficients Wϕ(6,m ,n ) and W i

ψ (6,m ,n )
for i = H ,V,D are generated. With Haar wavelets, the transformation process
subdivides the image into non-overlapping 2× 2 blocks and computes 2-point
averages and differences (per the scaling and wavelet vectors). Thus, there are
no horizontal, vertical, or diagonal detail coefficients in the first two transforms
shown; the input images are constant in all 2× 2 blocks (so all differences are
0). If the original image is shifted by one pixel, detail coefficients are generated
since there are then 2×2 areas that are not constant. This is the case in the third
transform shown.
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Chapter 8

Problem Solutions

Problem 8.4

(a) Table P8.4 shows the starting intensity values, their 8-bit codes, the IGS sum
used in each step, the 4-bit IGS code and its equivalent decoded value (the
decimal equivalent of the IGS code multiplied by 16), the error between the
decoded IGS intensities and the input values, and the squared error.

(b) Using Eq. (8.1-10) and the squared error values from Table P8.4, the rms error
is

er m s =

&
1

8
(144+ 25+ 49+ 16+ 16+ 169+ 64+ 9)

=

&
1

8
(492)

= 7.84

or about 7.8 intensity levels. From Eq. (8.1-11), the signal-to-noise ratio is

SN Rm s =
962+ 1442+ 1282+ 2402+ 1762+ 1602+ 642+ 962

492

=
173824

492� 353.
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Table P8.4
Intensity 8-bit Code Sum IGS Code Decoded IGS Error Square Error

00000000
108 01101100 01101100 0110 96 -12 144
139 10001011 10010111 1001 144 5 25
135 10000111 10001110 1000 128 -7 49
244 11110100 11110100 1111 240 -4 16
172 10101100 10110000 1011 176 4 16
173 10101101 10101101 1010 160 -13 169
56 00111000 01000101 0100 64 8 64
99 01100011 01101000 0110 96 -3 9

Problem 8.6
The conversion factors are computed using the logarithmic relationship

loga x =
1

logb a
logb x .

Thus, 1 Hartley= 3.3219 bits and 1 nat= 1.4427 bits.

Problem 8.7

Let the set of source symbols be
-

a 1,a 2, ...,aq

.
with probabilities

�
P (a 1) ,P (a 2) , ...,P

�
aq

�T
.

Then, using Eq. (8.1-6) and the fact that the sum of all P (a i ) is 1, we get

logq −H = logq

⎡
⎢⎣

q∑
j=1

P
�

a j

�⎤⎥⎦+
q∑

j=1

P
�

a j

�
log P

�
a j

�

=
q∑

j=1

P
�

a j

�
logq +

q∑
j=1

P
�

a j

�
log P

�
a j

�

=
q∑

j=1

P
�

a j

�
logqP

�
a j

�
.

Using the log relationship from Problem 8.6, this becomes

= log e
q∑

j=1

P
�

a j

�
lnqP

�
a j

�
.
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Then, multiplying the inequality lnx ≤ x − 1 by -1 to get ln1/x ≥ 1− x and ap-
plying it to this last result,

logq −H ≥ log e
q∑

i j=1

P
�

a j

�⎡⎣1− 1

qP
�

a j

�
⎤
⎦

≥ log e

⎡
⎢⎣

q∑
j=1

P
�

a j

�− 1

q

q∑
j=1

P
�

a j

�
P
�

a j

�
⎤
⎥⎦

≥ log e [1− 1]

≥ 0

so that
logq ≥H .

Therefore, H is always less than, or equal to, logq . Furthermore, in view of the
equality condition (x = 1) for ln 1/x ≥ 1− x , which was introduced at only one
point in the above derivation, we will have strict equality if and only if P(a j ) =
1/q for all j .

Problem 8.9

(d) We can compute the relative frequency of pairs of pixels by assuming that
the image is connected from line to line and end to beginning. The resulting
probabilities are listed in Table P8.9-2.

Table P8.9-2
Intensity pair Count Probability

(21, 21) 8 1/4
(21, 95) 4 1/8

(95, 169) 4 1/8
(169, 243) 4 1/8
(243, 243) 8 1/4
(243, 21) 4 1/8

The entropy of the intensity pairs is estimated using Eq. (8.1-7) and dividing by
2 (because the pixels are considered in pairs):

1

2
H̃ = −1

2

�
1

4
log2

1

4
+

1

8
log2

1

8
+

1

8
log2

1

8
+

1

8
log2

1

8
+

1

4
log2

1

4
+

1

8
log2

1

8

�

=
2.5

2
= 1.25 bits/pixel.
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The difference between this value and the entropy in (a) tells us that a mapping
can be created to eliminate (1.811− 1.25) = 0.56 bits/pixel of spatial
redundancy.

Problem 8.15
To decode G k

e x p (n ):

1. Count the number of 1s in a left-to-right scan of a concatenated G k
e x p (n )

bit sequence before reaching the first 0, and let i be the number of 1s
counted.

2. Get the k+i bits following the 0 identified in step 1 and let d be its decimal
equivalent.

3. The decoded integer is then

d +
i−1∑
j=0

2j+k .

For example, to decode the first G 2
e x p (n ) code in the bit stream 10111011..., let

i = 1, the number of 1s in a left-to-right scan of the bit stream before finding the
first 0. Get the 2+ 1 = 3 bits following the 0, that is, 111 so d = 7. The decoded
integer is then

7+
1−1∑
j=0

2j+2= 7+ 22 = 11.

Repeat the process for the next code word, which begins with the bit sequence
011...

Problem 8.18
The arithmetic decoding process is the reverse of the encoding procedure. Start
by dividing the [0, 1) interval according to the symbol probabilities. This is
shown in Table P8.18. The decoder immediately knows the message 0.23355
begins with an “e”, since the coded message lies in the interval [0.2, 0.5). This
makes it clear that the second symbol is an “a”, which narrows the interval to
[0.2, 0.26). To further see this, divide the interval [0.2, 0.5) according to the sym-
bol probabilities. Proceeding like this, which is the same procedure used to code
the message, we get “eaii!”.
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Table P8.18
Symbol Probability Range

a 0.2 [0.0, 0.2)
e 0.3 [0.2, 0.5)
i 0.1 [0.5, 0.6)
o 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
! 0.1 [0.9, 1.0)

Problem 8.20
The input to the LZW decoding algorithm in Example 8.7 is

39 39 126 126 256 258 260 259 257 126

The starting dictionary, to be consistent with the coding itself, contains 512
locations–with the first 256 corresponding to intensity values 0 through 255.
The decoding algorithm begins by getting the first encoded value, outputting the
corresponding value from the dictionary, and setting the “recognized sequence”
to the first value. For each additional encoded value, we (1) output the dictio-
nary entry for the pixel value(s), (2) add a new dictionary entry whose content
is the “recognized sequence” plus the first element of the encoded value being
processed, and (3) set the “recognized sequence” to the encoded value being
processed. For the encoded output in Example 8.12, the sequence of operations
is as shown in Table P8.20.

Note, for example, in row 5 of the table that the new dictionary entry for lo-
cation 259 is 126-39, the concatenation of the currently recognized sequence,
126, and the first element of the encoded value being processed–the 39 from the
39-39 entry in dictionary location 256. The output is then read from the third
column of the table to yield

39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126

where it is assumed that the decoder knows or is given the size of the image that
was received. Note that the dictionary is generated as the decoding is carried
out.
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Table P8.20
Recognized Encoded Value Pixels Dict. Address Dict. Entry

39 39
39 39 39 256 39-39
39 126 126 257 39-126

126 126 126 258 126-126
126 256 39-39 259 126-39
256 258 126-126 260 39-39-126
258 260 39-39-126 261 126-126-39
260 259 126-39 262 39-39-126-126
259 257 39-126 263 126-39-39
257 126 126 264 39-126-126

Problem 8.24
(a) - (b) Following the procedure outlined in Section 8.2.8, we obtain the results
shown in Table P8.24.

Table P8.24
DC Coefficient Difference Two’s Complement Value Code

-7 1...1001 00000
-6 1...1010 00001
-5 1...1011 00010
-4 1...1100 00011
4 0...0100 00100
5 0...0101 00101
6 0...0110 00110
7 0...0111 00111

Problem 8.27
The appropriate MPEG decoder is shown in Fig. P8.27.
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Figure P8.27

Problem 8.29
The derivation proceeds by substituting the uniform probability function into
Eqs. (8.2-57) - (8.2-59) and solving the resulting simultaneous equations with
L = 4. Equation (8.2-58) yields

s0 = 0
s1 = 1

2 (t1+ t2)
s2 =∞.

Substituting these values into the integrals defined by Eq. (8.2-57), we get two
equations. The first is (assuming s1 ≤A)

∫ s1

s0

(s − t1)p (s )d s = 0

1

2A

∫ 1
2 (t1+t2)

0

(s − t1)d s =
s 2

2
− t1s

����
1
2 (t1+ t2)
0

= 0

(t1+ t2)2− 4t1 (t1+ t2) = 0

(t1+ t2) (t2− 3t1) = 0

so

t1 = −t2

t2 = 3t1.

The first of these relations does not make sense since both t1 and t2 must be pos-
itive. The second relationship is a valid one. The second integral yields (noting
that s1 is less than A so the integral from A to∞ is 0 by the definition of p (s ))
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∫ s2

s1

(s − t2)p (s )d s = 0

1

2A

∫ A

1
2 (t1+t2)

(s − t2)d s =
s 2

2
− t2s

���� A
1
2 (t1+ t2)

= 0

4A2− 8At2− (t1+ t2)2− 4t2 (t1+ t2) = 0.

Substituting t2 = 3t1 from the first integral simplification into this result, we get

8t 2
1 − 6At1+A2 = 0�

t1− A

2

�
(8t1− 2A) = 0

t1 =
A

2

t1 =
A

4
.

Back substituting these values of t1, we find the corresponding t2 and s1 values:

t2 = 3A
2 and s1 =A for t1 = A

2
t2 = 3A

4 and s1 = A
2 for t1 = A

4 .

Because s1 = A is not a real solution (the second integral equation would then
be evaluated from A to A, yielding 0 or no equation), the solution is given by the
second. That is,

s0 = 0 s1 = A
2 s2 =∞

t1 = A
4 t2 = 3A

4 .

Problem 8.34
A variety of methods for inserting invisible watermarks into the DFT coefficients
of an image have been reported in the literature. Here is a simplified outline of
one in which watermark insertion is done as follows:

1. Create a watermark by generating a P-element pseudo-random sequence
of numbers, ω1,ω2, ...,ωP , taken from a Gaussian distribution with zero
mean and unit variance.

2. Compute the DFT of the image to be watermarked. We assume that the
transform has not been centered by pre-multiplying the image by (−1)x+y .
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3. Choose P
2 coefficients from each of the four quadrants of the DFT in the

middle frequency range. This is easily accomplished by choosing coeffi-
cients in the order shown in Fig. P8.34 and skipping the first K coefficients
(the low frequency coefficients) in each quadrant.

4. Insert the first half of the watermark into the chosen DFT coefficients, ci

for 1≤ i ≤ P
2 , in quadrants I and III of the DFT using

c ′i = ci (1+αωi )

5. Insert the second half of the watermark into the chosen DFT coefficients
of quadrants II and IV of the DFT in a similar manner. Note that this pro-
cess maintains the symmetry of the transform of a real-valued image. In
addition, constant α determines the strength of the inserted watermark.

6. Compute the inverse DFT with the watermarked coefficients replacing the
unmarked coefficients.

Watermark extraction is performed as follows:

1. Locate the DFT coefficients containing the watermark by following the in-
sertion process in the embedding algorithm.

2. Compute the watermark ω̂1,ω̂2, ...,ω̂P using

ω̂i = ĉ i − ci

3. Compute the correlation betweenω and ω̂and compare to a pre-determined
threshold T to determine if the mark is present.

This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
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II I

III IV

Figure P8.34

This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
This is some blan text to move figure to top of page.
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Chapter 9

Problem Solutions

Problem 9.2
(a) With reference to the discussion in Section 2.5.2, m-connectivity is used to
avoid multiple paths that are inherent in 8-connectivity. In one-pixel-thick, fully
connected boundaries, these multiple paths manifest themselves in the four ba-
sic patterns shown in Fig. P9.2(a). The solution to the problem is to use the hit-
or-miss transform to detect the patterns and then to change the center pixel to
0, thus eliminating the multiple paths. A basic sequence of morphological steps
to accomplish this is as follows:

X1 = A � B 1

Y1 = A ∩X c
1

X2 = Y1� B 2

Y2 = Y1 ∩X c
2

X3 = Y2� B 3

Y3 = Y2 ∩X c
3

X4 = Y3� B 4

Y4 = Y3 ∩X c
4

where A is the input image containing the boundary.

Problem 9.4
(a) Erosion is set intersection. The intersection of two convex sets is convex also.

(b) See Fig. P9.4(a). Keep in mind that the digital sets in question are the larger
black dots. The lines are shown for convenience in visualizing what the continu-
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Figure P9.2

Figure P9.4

ous sets would be, they are not part of the sets being considered here. The result
of dilation in this case is not convex because the center point is not in the set.

Problem 9.5
Refer to Fig. P9.5. The center of each structuring element is shown as a black
dot.

(a) This solution was obtained by eroding the original set (shown dashed) with
the structuring element shown (note that the origin is at the bottom, right).

(b) This solution was obtained by eroding the original set with the tall rectangu-
lar structuring element shown.

(c) This solution was obtained by first eroding the image shown down to two
vertical lines using the rectangular structuring element (note that this elements
is slightly taller than the center section of the “U” figure). This result was then
dilated with the circular structuring element.

(d) This solution was obtained by first dilating the original set with the large disk
shown. The dilated image was eroded with a disk whose diameter was equal to
one-half the diameter of the disk used for dilation.

Problem 9.7
(a) The dilated image will grow without bound.

(b) A one-element set (i.e., a one-pixel image).
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(a)

(b) (c)

(d)

Figure P9.5

Problem 9.9
The proof, which consists of showing that the expression-

x ∈Z 2 |x +b ∈ A , for every b ∈ B
.≡ -x ∈Z 2 | (B )x ⊆ A

.
follows directly from the definition of translation because the set (B )x has ele-
ments of the form x +b for b ∈ B . That is, x +b ∈ A for every b ∈ B implies that
(B )x ⊆A. Conversely, (B )x ⊆ A implies that all elements of (B )x are contained in
A, or x +b ∈ A for every b ∈ B .

Problem 9.11
The approach is to prove that-

x ∈Z 2
��(B̂ )x ∩A �= �.≡ -x ∈Z 2 |x = a +b for a ∈ A and b ∈ B

.
.

The elements of (B̂ )x are of the form x −b for b ∈ B . The condition (B̂ )x ∩A �= �
implies that for some b ∈ B , x −b ∈ A, or x −b = a for some a ∈ A (note in the
preceding equation that x = a +b ). Conversely, if x = a +b for some a ∈ A and
b ∈ B , then x −b = a or x −b ∈ A, which implies that (B̂ )x ∩A �= �.
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Problem 9.14
Starting with the definition of closing,

(A • B )c = [(A ⊕ B )� B ]c

= (A ⊕ B )c ⊕ B̂

= (Ac � B̂ )⊕ B̂

= Ac ◦ B̂ .

The proof of the other duality property follows a similar approach.

Problem 9.15
(a) Erosion of a set A by B is defined as the set of all values of translates, z , of B
such that (B )z is contained in A. If the origin of B is contained in B , then the set
of points describing the erosion is simply all the possible locations of the origin
of B such that (B )z is contained in A. Then it follows from this interpretation
(and the definition of erosion) that erosion of A by B is a subset of A. Similarly,
dilation of a set C by B is the set of all locations of the origin of B̂ such that the
intersection of C and (B̂ )z is not empty. If the origin of B is contained in B , this
implies that C is a subset of the dilation of C by B . From Eq. (9.3-1), we know
that A ◦ B = (A � B )⊕ B . Let C denote the erosion of A by B . It was already
established that C is a subset of A. From the preceding discussion, we know also
that C is a subset of the dilation of C by B . But C is a subset of A, so the opening
of A by B (the erosion of A by B followed by a dilation of the result) is a subset of
A.

Problem 9.18
It was possible to reconstruct the three large squares to their original size be-
cause they were not completely eroded and the geometry of the objects and
structuring element was the same (i.e., they were squares). This also would have
been true if the objects and structuring elements were rectangular. However, a
complete reconstruction, for instance, by dilating a rectangle that was partially
eroded by a circle, would not be possible.

Problem 9.20
The key difference between the Lake and the other two features is that the for-
mer forms a closed contour. Assuming that the shapes are processed one at a
time, a basic two-step approach for differentiating between the three shapes is
as follows:



77

Figure P9.22

Step 1. Apply an end-point detector to the object. If no end points are found,
the object is a Lake. Otherwise it is a Bay or a Line.

Step 2. There are numerous ways to differentiate between a Bay and a Line.
One of the simplest is to determine a line joining the two end points of the ob-
ject. If the AND of the object and this line contains only two points, the fig-
ure is a Bay. Otherwise it is a Line. There are pathological cases in which this
test will fail, and additional ”intelligence” needs to be built into the process, but
these pathological cases become less probable with increasing resolution of the
thinned figures.

Problem 9.22
(a) With reference to the example shown in Fig. P9.22, the boundary that re-
sults from using the structuring element in Fig. 9.15(c) generally forms an 8-
connected path (leftmost figure), whereas the boundary resulting from the struc-
turing element in Fig. 9.13(b) forms a 4-connected path (rightmost figure).

Problem 9.23
(a) If the spheres are not allowed to touch, the solution of the problem starts by
determining which points are background (black) points. To do this, we pick a
black point on the boundary of the image and determine all black points con-
nected to it using a connected component algorithm(Section 9.5.3). These con-
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nected components are labels with a value different from 1 or 0. The remaining
black points are interior to spheres. We can fill all spheres with white by apply-
ing the hole filling algorithm in Section 9.5.2 until all interior black points have
been turned into white points. The alert student will realize that if the interior
points are already known, they can all be turned simply into white points thus
filling the spheres without having to do region filling as a separate procedure.

Problem 9.24
Denote the original image by A. Create an image of the same size as the origi-
nal, but consisting of all 0’s, call it B . Choose an arbitrary point labeled 1 in A,
call it p1, and apply the connected component algorithm. When the algorithm
converges, a connected component has been detected. Label and copy into B
the set of all points in A belonging to the connected components just found, set
those points to 0 in A and call the modified image A1. Choose an arbitrary point
labeled 1 in A1, call it p2, and repeat the procedure just given. If there are K con-
nected components in the original image, this procedure will result in an image
consisting of all 0’s after K applications of the procedure just given. Image B will
contain K labeled connected components.

Problem 9.27
Erosion is the set of points z such that B , translated by z , is contained in A. If B
is a single point, this definition will be satisfied only by the points comprising A,
so erosion of A by B is simply A. Similarly, dilation is the set of points z such that
B̂ ( B̂ = B in this case), translated by z , overlaps A by at least one point. Because
B is a single point, the only set of points that satisfy this definition is the set of
points comprising A, so the dilation of A by B is A.

Problem 9.29
Consider first the case for n = 1:

E (1)G (F ) =
 "

E (1)G (F )
#c!c

=
�
[(F � B )∪G ]c

	c

=
�
(F � B )c ∩G c 	c

=
��

F c ⊕ B̂
�∩G c

c

=
��

F c ⊕ B
�∩G c 	c

=
"

D (1)G c (F c )
#c
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where the third step follows from DeMorgan’s law, (A ∪ B )c =Ac ∩ B c , the fourth
step follows from the duality property of erosion and dilation (see Section 9.2.3),
the fifth step follows from the symmetry of the SE, and the last step follows from
the definition of geodesic dilation. The next step, E (2)G (F ), would involve the
geodesic erosion of the above result. But that result is simply a set, so we could
obtain it in terms of dilation. That is, we would complement the result just men-
tioned, complement G , compute the geodesic dilation of size 1 of the two, and
complement the result. Continuing in this manner we conclude that

E (n )G =
 

D (1)G c

�"
E (n−1)

G (F )
#c�!c

=
"

D (1)G c

�
D (n−1)

G c

�
F c��#c

.

Similarly,

D (1)G (F ) =
 "

D (1)G (F )
#c!c

=
�
[(F ⊕ B )∩G ]c

	c

=
�
(F ⊕ B )c ∪G c 	c

=
��

F c � B̂
�∪G c

c

=
��

F c � B
�∪G c 	c

=
"

E (1)G c (F c )
#c

.

As before,

D (n )G =
 

E (1)G c

�"
D (n−1)

G (F )
#c�!c

=
"

E (1)G c

�
E (n−1)

G c

�
F c��#c

.

Problem 9.31
(a) Consider the case when n = 2

[(F � 2B )]c = [(F � B )� B ]c

= (F � B )c ⊕ B̂

=
�

F c ⊕ B̂
�⊕ B̂

=
�

F c ⊕ 2B̂
�
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where the second and third lines follow from the duality property in Eq. (9.2-5).
For an arbitrary number of erosions,

[(F �n B )]c = [(F � (n − 1)B )� B ]c

= [(F � (n − 1)B )]c ⊕ B̂

which, when expanded, will yield [(F �n B )]c = F c ⊕n B̂ .

(b) Proved in a similar manner.

Problem 9.33
(a) From Eq. (9.6-1),

�
f �b

�c =
�

min
(s ,t )∈b



f (x + s ,y + t )

��c

=
�
− max
(s ,t )∈b


− f (x + s ,y + t )
��c

= max
(s ,t )∈b


− f (x + s ,y + t )
�

= − f ⊕ b̂

= f c ⊕ b̂ .

The second step follows from the definition of the complement of a gray-scale

function; that is, the minimum of a set of numbers is equal to the negative of
the maximum of the negative of those numbers. The third step follows from
the definition of the complement. The fourth step follows from the definition of
gray-scale dilation in Eq. (9.6-2), using the fact that b̂ (x ,y ) = b (−x − y ). The last
step follows from the definition of the complement, − f = f c . The other duality
property is proved in a similar manner.

(c) We prove the first duality property. Start with the a geodesic dilation of size
1:

D (1)g

�
f
�
=

 "
D (1)g

�
f
�#c!c

=
��
(f ⊕b )∧ g

	c
c

=
��−�−(f ⊕b )∨−g

�	c
c

=
�−(f ⊕b )∨−g

	c

=
�
(f ⊕b )c ∨ g c 	c

=
�
(f c �b )∨ g c 	c

=
"

E (1)g c

�
f c �#c

.
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Figure P9.35

The second step follows from the definition of geodesic dilation. The third step
follows from the fact that the point-wise minimum of two sets of numbers is the
negative of the point-wise maximum of the two numbers. The fourth and fifth
steps follow from the definition of the complement. The sixth step follows from
the duality of dilation and erosion (we used the given fact that b̂ = b ). The last
step follows from the definition of geodesic erosion.

The next step in the iteration, D (2)g
�

f
�

, would involve the geodesic dilation of
size 1 of the preceding result. But that result is simply a set, so we could obtain
it in terms of erosion. That is, we would complement the result just mentioned,
complement g , compute the geodesic erosion of the two, and complement the
result. Continuing in this manner we conclude that

D (n )g (f ) =
"

E (1)g c

�
E (n−1)

g c

�
f c ��#c

.

The other property is proved in a similar way.

Problem 9.35
(a) The noise spikes are of the general form shown in Fig. P9.35(a), with other
possibilities in between. The amplitude is irrelevant in this case; only the shape
of the noise spikes is of interest. To remove these spikes we perform an opening
with a cylindrical structuring element of radius greater than Rmax, as shown in
Fig. P9.35(b). Note that the shape of the structuring element is matched to the
known shape of the noise spikes.
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Problem 9.36
(a) Color the image border pixels the same color as the particles (white). Call
the resulting set of border pixels B . Apply the connected component algorithm
(Section 9.5.3). All connected components that contain elements from B are
particles that have merged with the border of the image.
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Chapter 10

Problem Solutions

Problem 10.1
Expand f (x +Δx ) into a Taylor series about x :

f (x +Δx ) = f (x )+Δx f ′(x )+ (Δx )
2!

f ′′(x )+ · · ·

The increment in the spatial variable x is defined in Section 2.4.2 to be 1, so by
lettingΔx = 1 and keeping only the linear terms we obtain the result

f ′(x ) = f (x + 1)− f (x )

which agrees with Eq. (10.2-1).

Problem 10.2
The masks would have the coefficients shown in Fig. P10.2. Each mask would
yield a value of 0 when centered on a pixel of an unbroken 3-pixel segment ori-
ented in the direction favored by that mask. Conversely, the response would be
a +2 when a mask is centered on a one-pixel gap in a 3-pixel segment oriented
in the direction favored by that mask.

Problem 10.4
(a) The lines were thicker than the width of the line detector masks. Thus, when,
for example, a mask was centered on the line it “saw” a constant area and gave a
response of 0.
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Figure P10.2

Edges and their profiles

Gradient images and their profiles

Figure P10.5

Problem 10.5

(a) The first row in Fig. P10.5 shows a step, ramp, and edge image, and horizontal
profiles through their centers. Similarly, the second row shows the correspond-
ing gradient images and horizontal profiles through their centers. The thin dark
borders in the images are included for clarity in defining the borders of the im-
ages; they are not part of the image data.

Problem 10.7

Figure P10.7 shows the solution.
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Figure P10.7

Problem 10.9

Consider first the Sobel masks of Figs. 10.14 and 10.15. A simple way to prove
that these masks give isotropic results for edge segments oriented at multiples
of 45◦ is to obtain the mask responses for the four general edge segments shown
in Fig. P10.9, which are oriented at increments of 45◦. The objective is to show
that the responses of the Sobel masks are indistinguishable for these four edges.
That this is the case is evident from Table P10.9, which shows the response of
each Sobel mask to the four general edge segments. We see that in each case
the response of the mask that matches the edge direction is (4a − 4b ), and the
response of the corresponding orthogonal mask is 0. The response of the re-
maining two masks is either (3a − 3b ) or (3b − 3a ). The sign difference is not
significant because the gradient is computed by either squaring or taking the
absolute value of the mask responses. The same line of reasoning applies to the
Prewitt masks.
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Figure P10.9

Table P10.9
Edge Horizontal Vertical +45◦ −45◦

direction Sobel (g x ) Sobel (g y ) Sobel (g 45) Sobel (g−45)
Horizontal 4a − 4b 0 3a − 3b 3b − 3a

Vertical 0 4a − 4b 3a − 3b 3a − 3b
+45◦ 3a − 3b 3a − 3b 4a − 4b 0
−45◦ 3b − 3a 3a − 3b 0 4a − 4b

Problem 10.11
(a) The operators are as follows (negative numbers are shown underlined):

111 110 101 01 1 1 11 1 10 1 01 011

000 101 101 101 000 1 01 101 101

11 1 01 1 101 110 111 011 101 11 0

Problem 10.13
(a) The local average at a point (x ,y ) in an image is given by

f̄ (x ,y ) =
1

n 2

∑
z i∈Sx y

z i

where Sx y is the region in the image encompassed by the n ×n averaging mask
when it is centered at (x ,y ) and the z i are the intensities of the image pixels in
that region. The partial

∂ f̄ /∂ x = f̄ (x + 1,y )− f̄ (x ,y )
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is thus given by

∂ f̄ /∂ x =
1

n 2

∑
z i∈Sx+1,y

z i − 1

n 2

∑
z i∈Sx y

z i

The first summation on the right can be interpreted as consisting of all the pixels
in the second summation minus the pixels in the first row of the mask, plus the
row picked up by the mask as it moved from (x ,y ) to (x + 1,y ). Thus, we can
write the preceding equation as

∂ f̄ /∂ x =
1

n 2

∑
z i∈Sx+1,y

z i − 1

n 2

∑
z i∈Sx y

z i

=

'+
1

n 2

∑
z i∈Sx y

z i

,
+

1

n 2 (sum of pixels in new row)

− 1

n 2
(sum of pixels in 1st row)

(
− 1

n 2

∑
z i∈Sx y

z i

=
1

n 2

y+ n−1
2∑

k=y− n−1
2

f (x +
n + 1

2
,k )− 1

n 2

y+ n−1
2∑

k=y− n−1
2

f (x − n − 1

2
,k )

=
1

n 2

' y+ n−1
2∑

k=y− n−1
2

f (x +
n + 1

2
,k )− f (x − n − 1

2
,k )

(
.

This expression gives the value of ∂ f̄ /∂ x at coordinates (x ,y ) of the smoothed
image. Similarly,

∂ f̄ /∂ y =
1

n 2

∑
z i∈Sx ,y+1

z i − 1

n 2

∑
z i∈Sx y

z i

=

'+
1

n 2

∑
z i∈Sx y

z i

,
+

1

n 2
(sum of pixels in new col)

− 1

n 2 (sum of pixels in 1st col)

(
− 1

n 2

∑
z i∈Sx y

z i

=
1

n 2

x+ n−1
2∑

k=x− n−1
2

f (k ,y +
n + 1

2
)− 1

n 2

x+ n−1
2∑

k=x− n−1
2

f (k ,y − n − 1

2
)

=
1

n 2

' x+ n−1
2∑

k=x− n−1
2

f (k ,y +
n + 1

2
)− f (k ,y − n − 1

2
)

(
.
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The edge magnitude image corresponding to the smoothed image f̄ (x ,y ) is then
given by

M̄ (x ,y ) =
$
(∂ f̄ /∂ x )2+(∂ f̄ /∂ y )2.

Problem 10.14

(a) We proceeed as follows

Average
�∇2G (x ,y )


=

∫ ∞
−∞

∫ ∞
−∞
∇2G (x ,y )d x d y

=

∫ ∞
−∞

∫ ∞
−∞

�
x 2+ y 2− 2σ2

σ4

�
e−

x 2+y 2

2σ2 d x d y

=
1

σ4

∫ ∞
−∞

x 2e−
x 2

2σ2 d x

∫ ∞
−∞

e−
y 2

2σ2 d y

+
1

σ4

∫ ∞
−∞

y 2e−
y 2

2σ2 d y

∫ ∞
−∞

e−
x 2

2σ2 d x

− 2

σ2

∫ ∞
−∞

e−
x 2+y 2

2σ2 d x d y

=
1

σ4

��
2πσ×σ2

���
2πσ

�
+

1

σ4

��
2πσ×σ2

���
2πσ

�

−2
�

2πσ2
�

σ2

= 4π− 4π

= 0

the fourth line follows from the fact that

variance(z ) =σ2 =
1�

2πσ

∫ ∞
−∞

z 2e−
z 2

2σ2 d z

and
1�

2πσ

∫ ∞
−∞

e−
z 2

2σ2 d z = 1.

Problem 10.15

(b) The answer is yes for functions that meet certain mild conditions, and if
the zero crossing method is based on rotational operators like the LoG func-
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tion and a threshold of 0. Geometrical properties of zero crossings in general
are explained in some detail in the paper ”On Edge Detection,” by V. Torre and T.
Poggio, IEEE Trans. Pattern Analysis and Machine Intell., vol. 8, no. 2, 1986, pp.
147-163. Looking up this paper and becoming familiar with the mathematical
underpinnings of edge detection is an excellent reading assignment for graduate
students.

Problem 10.18

(a) Equation (10.2-21) can be written in the following separable form

G (x ,y ) = e−
x 2+y 2

2σ2

= e−
x 2

2σ2 e−
y 2

2σ2

= G (x )G (y ).

From Eq. (3.4-2) and the preceding equation, the convolution of G (x ,y ) and
f (x ,y ) can be written as

G (x ,y ) f (x ,y ) =
a∑

s=−a

a∑
t=−a

G (s , t )f (x − s ,y − t )

=
a∑

s=−a

a∑
t=−a

e−
s 2

2σ2 e−
t 2

2σ2 f (x − s ,y − t )

=
a∑

s=−a

e−
s 2

2σ2

⎡
⎣ a∑

t=−a

e−
t 2

2σ2 f (x − s ,y − t )

⎤
⎦

where a = (n − 1)/2 and n is the size of the n ×n mask obtained by sampling
Eq. (10.2-21). The expression inside the brackets is the 1-D convolution of the
exponential term, e−t 2/2σ2 , with the rows of f (x ,y ). Then the outer summation
is the convolution of e−s 2/2σ2 with the columns of the result. Stated another way,

G (x ,y ) f (x ,y ) =G (x )
�
G (y ) f (x ,y )

	
.

Problem 10.19
(a) As Eq. (10.2-25) shows, the first two steps of the algorithm can be summa-
rized into one equation:

g (x ,y ) =∇2[G (x ,y ) f (x ,y )].
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Using the definition of the Laplacian operator we can express this equation as

g (x ,y ) =
∂ 2

∂ x 2

�
G (x ,y ) f (x ,y )

	
+
∂ 2

∂ y 2

�
G (x ,y ) f (x ,y )

	

=
∂ 2

∂ x 2

�
G (x ) G (y ) f (x ,y )

	
+
∂ 2

∂ y 2

�
G (x ) G (y ) f (x ,y )

	

where the second step follows from Problem 10.18, with G (x ) = e−
x 2

2σ2 and G (y ) =

e−
y 2

2σ2 . The terms inside the two brackets are the same, so only two convolutions
are required to implement them. Using the definitions in Section 10.2.1, the
partials may be written as

∂ 2 f

∂ x 2 = f (x + 1)+ f (x − 1)− 2f (x )

and
∂ 2 f

∂ y 2 = f (y + 1)+ f (y − 1)− 2f (y ).

The first term can be implemented via convolution with a 1× 3 mask having
coefficients coefficients, [1− 2 1], and the second with a 3× 1 mask having the
same coefficients. Letting ∇2

x and ∇2
y represent these two operator masks, we

have the final result:

g (x ,y ) =∇2
x

�
G (x ) G (y ) f (x ,y )

	
+∇2

y

�
G (x ) G (y ) f (x ,y )

	
which requires a total of four different 1-D convolution operations.

(b) If we use the algorithm as stated in the book, convolving an M ×N image
with an n ×n mask will require n 2×M ×N multiplications (see the solution to
Problem 10.18). Then convolution with a 3× 3 Laplacian mask will add another
9×M ×N multiplications for a total of (n 2 + 9)×M ×N multiplications. De-
composing a 2-D convolution into 1-D passes requires 2nM N multiplications,
as indicated in the solution to Problem 10.18. Two more convolutions of the re-
sulting image with the 3×1 and 1×3 derivative masks adds 3M N+3M N = 6M N
multiplications. The computational advantage is then

A =
(n 2+ 9)M N

2nM N + 6M N
=

n 2+ 9

2n + 6

which is independent of image size. For example, for n = 25, A = 11.32, so it
takes on the order of 11 times more multiplications if direct 2-D convolution is
used.
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Problem 10.21
Parts (a) through (c) are shown in rows 2 through 4 of Fig. P10.21.

Problem 10.22

(b) θ = cot−1(2) = 26.6◦ and ρ = (1)sinθ = 0.45.

Problem 10.23
(a) Point 1 has coordinates x = 0 and y = 0. Substituting into Eq. (10.2-38) yields
ρ = 0, which, in a plot of ρ vs. θ , is a straight line.

(b) Only the origin (0,0) would yield this result.
(c) At θ =+90◦, it follows from Eq. (10.2-38) that x · (0)+ y · (1) = ρ, or y =ρ. At
θ =−90◦ , x · (0)+ y · (−1) =ρ, or−y =ρ. Thus the reflective adjacency.

Problem 10.26
The essence of the algorithm is to compute at each step the mean value, m1, of
all pixels whose intensities are less than or equal to the previous threshold and,
similarly, the mean value, m2, of all pixels with values that exceed the threshold.
Let pi = n i/n denote the i th component of the image histogram, where n i is
the number of pixels with intensity i , and n is the total number of pixels in the
image. Valid values of i are in the range 0≤ i ≤ L− 1, where L is the number on
intensities and i is an integer. The means can be computed at any step k of the
algorithm:

m1(k ) =
I (k−1)∑

i=0

i pi /P(k )

where

P(k ) =
I (k−1)∑

i=0

pi

and

m2(k ) =
L−1∑

i=I (k−1)+1

i pi /[1−P(k )] .

The term I (k − 1) is the smallest integer less than or equal to T (k − 1), and T (0)
is given. The next value of the threshold is then

T (k + 1) =
1

2
[m1(k )+m2(k )] .
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Edges and their profiles

Gradient images and their profiles

Laplacian images and their profiles

Images from Steps 1 and 2 of the Marr-Hildreth algorithm and their profiles

Figure P10.21

Problem 10.27
As stated in Section 10.3.2, we assume that the initial threshold is chosen be-
tween the minimum and maximum intensities in the image. To begin, consider
the histogram in Fig. P10.27. It shows the threshold at the k th iterative step, and
the fact that the mean m1(k + 1) will be computed using the intensities greater
than T (k ) times their histogram values. Similarly, m2(k+1)will be computed us-
ing values of intensities less than or equal to T (k ) times their histogram values.
Then, T (k+1) = 0.5[m1(k+1)+m2(k+1)]. The proof consists of two parts. First,
we prove that the threshold is bounded between 0 and L−1. Then we prove that
the algorithm converges to a value between these two limits.

To prove that the threshold is bounded, we write T (k + 1) = 0.5[m1(k + 1) +
m2(k + 1)]. If m2(k + 1) = 0, then m1(k + 1) will be equal to the image mean,
M , and T (k + 1) will equal M/2 which is less than L− 1. If m2(k + 1) is zero, the
same will be true. Both m1 and m2 cannot be zero simultaneously, so T (k + 1)
will always be greater than 0 and less than L− 1.

To prove convergence, we have to consider three possible conditions:

1. T (k + 1) = T (k ), in which case the algorithm has converged.
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Figure P10.27

2. T (k + 1)< T (k ), in which case the threshold moves to the left.

3. T (k + 1)> T (k ), in which case the threshold moves to the right.

In case (2), when the threshold value moves to the left, m2 will decrease or stay
the same and m1 will also decrease or stay the same (the fact that m1 decreases
or stays the same is not necessarily obvious. If you don’t see it, draw a simple his-
togram and convince yourself that it does), depending on how much the thresh-
old moved and on the values of the histogram. However, neither threshold can
increase. If neither mean changes, then T (k+2)will equal T (k+1) and the algo-
rithm will stop. If either (or both) mean decreases, then T (k +2)< T (k +1), and
the new threshold moves further to the left. This will cause the conditions just
stated to happen again, so the conclusion is that if the thresholds starts mov-
ing left, it will always move left, and the algorithm will eventually stop with a
value T > 0, which we know is the lower bound for T . Because the threshold al-
ways decreases or stops changing, no oscillations are possible, so the algorithm
is guaranteed to converge.

Case (3) causes the threshold to move the right. An argument similar to the
preceding discussion establishes that if the threshold starts moving to the right it
will either converge or continue moving to the right and will stop eventually with
a value less than L−1. Because the threshold always increases or stops changing,
no oscillations are possible, so the algorithm is guaranteed to converge.
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Figure P10.29

Problem 10.29
The value of the the threshold at convergence is independent of the initial value
if the initial value of the threshold is chosen between the minimum and max-
imum intensity of the image (we know from Problem 10.27 that the algorithm
converges under this condition). The final threshold is not independent of the
initial value chosen for T if that value does not satisfy this condition. For ex-
ample, consider an image with the histogram in Fig. P10.29. Suppose that we
select the initial threshold T (1) = 0. Then, at the next iterative step, m2(2) = 0,
m1(2) = M , and T (2) = M/2. Because m2(2) = 0, it follows that m2(3) = 0,
m1(3) =M , and T (3) = T (2) =M/2. Any following iterations will yield the same
result, so the algorithm converges with the wrong value of threshold. If we had
started with Imin < T (1)< Imax, the algorithm would have converged properly.

Problem 10.30
(a) For a uniform histogram, we can view the intensity levels as points of unit
mass along the intensity axis of the histogram. Any values m1(k ) and m2(k )
are the means of the two groups of intensity values G1 and G2. Because the his-
togram is uniform, these are the centers of mass of G1 and G2. We know from the
solution of Problem 10.27 that if T starts moving to the right, it will always move
in that direction, or stop. The same holds true for movement to the left. Now,
assume that T (k ) has arrived at the center of mass (average intensity). Because
all points have equal "weight" (remember the histogram is uniform), if T (k + 1)
moves to the right G2 will pick up, say, Q new points. But G1 will lose the same
number of points, so the sum m1 +m2 will be the same and the algorithm will
stop.
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Problem 10.32
(a)

σ2
B = P1(m 1−mG )2+P2(m 2−mG )2

= P1(m1− (P1m1+P2m2)]2+P2[m2− (P1m1+P2m2)]2

= P1[m 1−m1(1−P 2)−P2m2]2+P2[m2−P1m1−m2(1−P1)]2

= P1[P2m1−P2m2]2+P2[P1m2−P1m1]2

= P1P2
2 (m1−m2)2+P2P2

1 (m1−m2)2

= (m1−m2)2[P1P2
2 +P2P2

1 ]

= (m1−m2)2[P1P2(P2+P1)]

= P1P2(m1−m2)2

we used the facts that mG = P1m1+P2m2 and P1+P2 = 1. This proves the first
part of Eq. (10.3-15).

(b) First, we have to show that

m2(k ) =
mG −m (k )

1−P1(k )
.

This we do as follows:

m2(k ) =
1

P2(k )

L−1∑
i=k+1

i pi

=
1

1−P1(k )

L−1∑
i=k+1

i pi

=
1

1−P1(k )

⎡
⎣L−1∑

i=0

i pi −
k∑

i=0

i pi

⎤
⎦

=
mG −m (k )

1−P1(k )
.

Then,

σ2
B = P1P2(m1−m2)2

= P1P2

�
m

P1
− mG −m

1−P1

�2

= P1(1−P1)
�

m −P1mG

P1(1−P1)

�2

=
(mG P1−m )2

P1(1−P1)
.
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Problem 10.35
(a) Let R1 and R2 denote the regions whose pixel intensities are greater than T
and less or equal to T , respectively. The threshold T is simply an intensity value,
so it gets mapped by the transformation function to the value T ′ = 1−T . Values
in R1 are mapped to R ′1 and values in R2 are mapped to R ′2. The important thing
is that all values in R ′1 are below T ′ and all values in R ′2 are equal to or above
T ′. The sense of the inequalities has been reversed, but the separability of the
intensities in the two regions has been preserved.

(b) The solution in (a) is a special case of a more general problem. A thresh-
old is simply a location in the intensity scale. Any transformation function that
preserves the order of intensities will preserve the separabiliy established by the
threshold. Thus, any monotonic function (increasing or decreasing) will pre-
serve this order. The value of the new threshold is simply the old threshold pro-
cessed with the transformation function.

Problem 10.37
(a) The first column would be black and all other columns would be white. The
reason: A point in the segmented image is set to 1 if the value of the image at
that point exceeds b at that point. But b = 0, so all points in the image that are
greater than 0 will be set to 1 and all other points would be set to 0. But the only
points in the image that do not exceed 0 are the points that are 0, which are the
points in the first column.

Problem 10.39
The region splitting is shown in Fig. P10.39(a). The corresponding quadtree is
shown in Fig. P10.39(b).

Problem 10.41
(a) The elements of T [n ] are the coordinates of points in the image below the
plane g (x ,y ) = n , where n is an integer that represents a given step in the execu-
tion of the algorithm. Because n never decreases, the set of elements in T [n−1]
is a subset of the elements in T [n ]. In addition, we note that all the points below
the plane g (x ,y ) = n − 1 are also below the plane g (x ,y ) = n , so the elements
of T [n ] are never replaced. Similarly, Cn (Mi ) is formed by the intersection of
C (Mi ) and T [n ], where C (Mi ) (whose elements never change) is the set of coor-
dinates of all points in the catchment basin associated with regional minimum
Mi . Because the elements of C (Mi ) never change, and the elements of T [n ] are
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Figure P10.39

never replaced, it follows that the elements in Cn (Mi ) are never replaced either.
In addition, we see that Cn−1(Mi )⊆Cn (Mi ).

Problem 10.43
The first step in the application of the watershed segmentation algorithm is to
build a dam of height max+ 1 to prevent the rising water from running off the
ends of the function, as shown in Fig. P10.43(b). For an image function we would
build a box of height max+ 1 around its border. The algorithm is initialized by
setting C [1] = T [1]. In this case, T [1] =



g (2)

�
, as shown in Fig. P10.43(c) (note

the water level). There is only one connected component in this case: Q[1] =

q1
�
= {g (2)}.
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Next, we let n = 2 and, as shown in Fig. P10.43(d), T [2] = {g (2), g (14)} and
Q[2] = {q1;q2}, where, for clarity, different connected components are separated
by semicolons. We start construction of C [2] by considering each connected
component in Q[2]. When q = q1, the term q ∩C [1] is equal to {g (2)}, so con-
dition 2 is satisfied and, therefore, C [2] = {g (2)}. When q = q2, q ∩C [1] = � (the
empty set) so condition 1 is satisfied and we incorporate q in C [2], which then
becomes C [2] = {g (2); g (14)} where, as above, different connected components
are separated by semicolons.

When n = 3 [Fig. P10.43(e)], T [3] = {2,3,10,11,13,14} andQ[3] = {q1;q2;q3}=
{2,3;10,11;13,14} where, in order to simplify the notation we let k denote g (k ).
Proceeding as above, q1 ∩C [2] = {2} satisfies condition 2, so q1 is incorporated
into the new set to yield C [3] = {2,3;14}. Similarly, q2 ∩C [2] = � satisfies con-
dition 1 and C [3] = {2,3;10,11;14}. Finally, q3 ∩ C [2] = {14} satisfies condi-
tion 2 and C [3] = {2,3;10,11;13,14}. It is easily verified that C [4] = C [3] =
{2,3;10,11;13,14}.

When n = 5 [Fig. P10.43(f)], we have, T [5] = {2,3,5,6,10,11,12,13, 14} and
Q[5] = {q1;q2;q3} = {2,3;5,6;10,11,12,13, 14} (note the merging of two previ-
ously distinct connected components). Is is easily verified that q1∩C [4] satisfies
condition 2 and that q2 ∩C [4] satisfied condition 1. Proceeding with these two
connected components exactly as above yields C [5] = {2,3;5,6;10,11;13,14} up
to this point. Things get more interesting when we consider q3. Now, q3∩C [4] =
{10,11;13,14} which, becuase it contains two connected components of C [4],
satisfies condition 3. As mentioned previously, this is an indication that water
from two different basins has merged and a dam must be built to prevent this
condition. Dam building is nothing more than separating q3 into the two origi-
nal connected components. In this particular case, this is accomplished by the
dam shown in Fig. P10.43(g), so that now q3 = {q31;q32}= {10,11;13,14}. Then,
q31 ∩C [4] and q32 ∩C [4] each satisfy condition 2 and we have the final result for
n = 5, C [5] = {2,3;5,6;10,11;13;14}.

Continuing in the manner just explained yields the final segmentation result
shown in Fig. P10.43(h), where the “edges” are visible (from the top) just above
the water line. A final post-processing step would remove the outer dam walls
to yield the inner edges of interest.

Problem 10.45
(a) True, assuming that the threshold is not set larger than all the differences en-
countered as the object moves. The easiest way to see this is to draw a simple
reference image, such as the white rectangle on a black background. Let that
rectangle be the object that moves. Because the absolute ADI image value at
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Figure P10.43
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any location is the absolute difference between the reference and the new im-
age, it is easy to see that as the object enters areas that are background in the
reference image, the absolute difference will change from zero to nonzero at the
new area occupied by the moving object. Thus, as long as the object moves, the
dimension of the absolute ADI will grow.

Problem 10.47
Recall that velocity is a vector, whose magnitude is speed. Function g x is a
one-dimensional "record" of the position of the moving object as a function of
time (frame rate). The value of velocity (speed) is determined by taking the first
derivative of this function. To determine whether velocity is positive or negative
at a specific time, n , we compute the instantaneous acceleration (rate of change
of speed) at that point; that is we compute the second derivate of g x . Viewed
another way, we determine direction by computing the derivative of the deriva-
tive of g x . But, the derivative at a point is simply the tangent at that point. If
the tangent has a positive slope, the velocity is positive; otherwise it is negative
or zero. Because g x is a complex quantity, its tangent is given by the ratio of its
imaginary to its real part. This ratio is positive when S1x and S2x have the same
sign, which is what we started out to prove.

Problem 10.49
(a) It is given that 10% of the image area in the horizontal direction is occupied
by a bullet that is 2.5 cm long. Because the imaging device is square (256× 256
elements) the camera looks at an area that is 25 cm× 25 cm, assuming no optical
distortions. Thus, the distance between pixels is 25/256=0.098 cm/pixel. The
maximum speed of the bullet is 1000 m/sec= 100,000 cm/sec. At this speed, the
bullet will travel 100,000/0.98= 1.02×106 pixels/sec. It is required that the bullet
not travel more than one pixel during exposure. That is, (1.02×106 pixels/sec)×
K sec ≤ 1 pixel. So, K ≤ 9.8× 10−7 sec.
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Chapter 11

Problem Solutions

Problem 11.1
(a) The key to this problem is to recognize that the value of every element in a
chain code is relative to the value of its predecessor. The code for a boundary
that is traced in a consistent manner (e.g., clockwise) is a unique circular set of
numbers. Starting at different locations in this set does not change the struc-
ture of the circular sequence. Selecting the smallest integer as the starting point
simply identifies the same point in the sequence. Even if the starting point is
not unique, this method would still give a unique sequence. For example, the
sequence 101010 has three possible starting points, but they all yield the same
smallest integer 010101.

Problem 11.3
(a) The rubber-band approach forces the polygon to have vertices at every in-
flection of the cell wall. That is, the locations of the vertices are fixed by the
structure of the inner and outer walls. Because the vertices are joined by straight
lines, this produces the minimum-perimeter polygon for any given wall config-
uration.

Problem 11.4
(a) When the B vertices are mirrored, they coincide with the two white vertices
in the corners, so they become collinear with the corner vertices. The algorithm
ignores collinear vertices, so the small indentation will not be detected.

(b) When the indentation is deeper than one pixel (but still 1 pixel wide) we have
the situation shown in Fig. P11.4. Note that the B vertices cross after mirroring.
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Order and location of vertices

before mirroring the verticesB

Order and location of vertices

after mirroring the verticesB

1 2

34

1

2

3

4

Figure P11.4

Referring to the bottom figure, when the algorithm gets to vertex 2, vertex 1 will
be identified as a vertex of the MPP, so the algorithm is initialized at that step.
Because of initialization, vertex 2 is visited again. It will be collinear with W C

and VL, so BC will be set at the location of vertex 2. When vertex 3 is visited,
sgn(VL,W C,V3) will be 0, so BC will be set at vertex 3. When vertex 4 is visited,
sgn(1,3,4)will be negative, so VL will be set to vertex 3 and the algorithm is reini-
tialized. Because vertex 2 will never be visited again, it will never become a ver-
tex of the MPP. The next MPP vertex to be detected will be vertex 4. Therefore,
indentations 2 pixels or greater in depth and 1 pixel wide will be represented by
the sequence 1−3−4 in the second figure. Thus, the algorithm solves the cross-
ing caused by the mirroring of the two B vertices by keeping only one vertex.
This is a general result for 1-pixel wide, 2 pixel (or greater) deep intrusions.

Problem 11.5

(a) The resulting polygon would contain all the boundary pixels.

Problem 11.6

(a) The solution is shown in Fig. P11.6(b).
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Figure P11.6

Problem 11.7
(a) From Fig. P11.7(a), we see that the distance from the origin to the triangle is
given by

r (θ ) =
D0

cosθ
0◦ ≤ θ < 60◦

=
D0

cos(120◦ −θ ) 60◦ ≤ θ < 120◦

=
D0

cos(180◦ −θ ) 120◦ ≤ θ < 180◦

=
D0

cos(240◦ −θ ) 180◦ ≤ θ < 240◦

=
D0

cos(300◦ −θ ) 240◦ ≤ θ < 300◦

=
D0

cos(360◦ −θ ) 300◦ ≤ θ < 360◦

Figure P11.7
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Figure P11.8

Figure P11.10

where D0 is the perpendicular distance from the origin to one of the sides of the
triangle, and D = D0/cos(60◦) = 2D0. Once the coordinates of the vertices of
the triangle are given, determining the equation of each straight line is a simple
problem, and D0 (which is the same for the three straight lines) follows from
elementary geometry.

Problem 11.8
The solutions are shown in Fig. P11.8.

Problem 11.9
(a) In the first case, N (p ) = 5, S(p ) = 1, p2 ·p4 ·p6 = 0, and p4 ·p6 ·p8 = 0, so Eq.
(11.1-4) is satisfied and p is flagged for deletion. In the second case, N (p ) = 1, so
Eq. (11.1-4) is violated and p is left unchanged. In the third case p2 ·p4 ·p6 = 1
and p4 ·p6 · p8 = 1, so conditions (c) and (d) of Eq. (11.1-4) are violated and p
is left unchanged. In the forth case S(p ) = 2, so condition (b) is violated and p is
left unchanged.

Problem 11.10
(a) The result is shown in Fig. P11.10(b).
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Problem 11.11

(a) The number of symbols in the first difference is equal to the number of seg-
ment primitives in the boundary, so the shape order is 12.

Problem 11.14

The mean is sufficient.

Problem 11.16

This problem can be solved by using two descriptors: holes and the convex de-
ficiency (see Section 9.5.4 regarding the convex hull and convex deficiency of a
set). The decision making process can be summarized in the form of a simple
decision, as follows: If the character has two holes, it is an 8. If it has one hole
it is a 0 or a 9. Otherwise, it is a 1 or an X. To differentiate between 0 and 9 we
compute the convex deficiency. The presence of a ”significant” deficiency (say,
having an area greater than 20% of the area of a rectangle that encloses the char-
acter) signifies a 9; otherwise we classify the character as a 0. We follow a similar
procedure to separate a 1 from an X. The presence of a convex deficiency with
four components whose centroids are located approximately in the North, East,
West, and East quadrants of the character indicates that the character is an X.
Otherwise we say that the character is a 1. This is the basic approach. Imple-
mentation of this technique in a real character recognition environment has to
take into account other factors such as multiple ”small” components in the con-
vex deficiency due to noise, differences in orientation, open loops, and the like.
However, the material in Chapters 3, 9 and 11 provide a solid base from which
to formulate solutions.

Problem 11.17

(b) Normalize the matrix by dividing each component by 19600 + 200 + 20000
= 39800:

0.4925 0.0050
0 0.5025

so p11 = 0.4925, p12 = 0.005, p21 = 0, and p22 = 0.5025.
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Problem 11.19
(a) The image is

0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

.

Let z 1 = 0 and z 2 = 1. Because there are only two intensity levels, matrix G is of
order 2×2. Element g 11 is the number of pixels valued 0 located one pixel to the
right of a 0. By inspection, g 11 = 0. Similarly, g 12 = 10, g 21 = 10, and g 22 = 0.
The total number of pixels satisfying the predicate P is 20, so the normalized
co-occurrence matrix is

G=

'
0 1/2

1/2 0

(
.

Problem 11.21
The mean square error, given by Eq. (11.4-12), is the sum of the eigenvalues
whose corresponding eigenvectors are not used in the transformation. In this
particular case, the four smallest eigenvalues are applicable (see Table 11.6), so
the mean square error is

em s =
6∑

j=3

λj = 1729.

The maximum error occurs when K = 0 in Eq. (11.4-12) which then is the sum
of all the eigenvalues, or 15039 in this case. Thus, the error incurred by using
only the two eigenvectors corresponding to the largest eigenvalues is just 11.5 %
of the total possible error.

Problem 11.23
When the boundary is symmetric about the both the major and minor axes and
both axes intersect at the centroid of the boundary.

Problem 11.25
We can compute a measure of texture using the expression

R(x ,y ) = 1− 1

1+σ2(x ,y )
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where σ2(x ,y ) is the intensity variance computed in a neighborhood of (x ,y ).
The size of the neighborhood must be sufficiently large so as to contain enough
samples to have a stable estimate of the mean and variance. Neighborhoods of
size 7× 7 or 9× 9 generally are appropriate for a low-noise case such as this.

Because the variance of normal wafers is known to be 400, we can obtain a
normal value for R(x ,y ) by using σ2 = 400 in the above equation. An abnor-
mal region will have a variance of about (50)2 = 2,500 or higher, yielding a larger
value of R(x ,y ). The procedure then is to compute R(x ,y ) at every point (x ,y )
and label that point as 0 if it is normal and 1 if it is not. At the end of this pro-
cedure we look for clusters of 1’s using, for example, connected components
(see Section 9.5.3 regarding computation of connected components) . If the
area (number of pixels) of any connected component exceeds 400 pixels, then
we classify the sample as defective.
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Chapter 12

Problem Solutions

Problem 12.2
From the definition of the Euclidean distance,

Dj (x) =
//x−mj

//= �
(x−mj )T (x−mj )


.1/2

Because Dj (x) is non-negative, choosing the smallest Dj (x) is the same as choos-
ing the smallest D2

j (x), where

D2
j (x) =

//x−mj

//2
= (x−mj )T (x−mj )

= xT x− 2xT mj +mT
j mj

= xT x−2

�
xT mj − 1

2
mT

j mj

�
.

We note that the term xT x is independent of j (that is, it is a constant with re-
spect to j in D2

j (x), j = 1,2, . . .). Thus, choosing the minimum of D2
j (x) is equiva-

lent to choosing the maximum of
�

xT mj − 1
2 mT

j mj

�
.

Problem 12.4
The solution is shown in Fig. P12.4, where the x ’s are treated as voltages and
the Y ’s denote impedances. From basic circuit theory, the currents, I ’s, are the
products of the voltages times the impedances. The system operates by select-
ing the maximum current, which corresponds to the best match and, therefore,
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Figure P12.4

performs character recognition by the minimum-distance approach. The speed
of response is instantaneous for all practical purposes.

Problem 12.6
The solution to the first part of this problem is based on being able to extract
connected components (see Chapters 2 and 11) and then determining whether
a connected component is convex or not (see Chapter 11). Once all connected
components have been extracted we perform a convexity check on each and
reject the ones that are not convex. All that is left after this is to determine if the
remaining blobs are complete or incomplete. To do this, the region consisting
of the extreme rows and columns of the image is declared a region of 1’s. Then
if the pixel-by-pixel AND of this region with a particular blob yields at least one
result that is a 1, it follows that the actual boundary touches that blob, and the
blob is called incomplete. When only a single pixel in a blob yields an AND
of 1 we have a marginal result in which only one pixel in a blob touches the
boundary. We can arbitrarily declare the blob incomplete or not. From the point
of view of implementation, it is much simpler to have a procedure that calls a
blob incomplete whenever the AND operation yields one or more results valued
1. After the blobs have been screened using the method just discussed, they
need to be classified into one of the three classes given in the problem state-
ment. We perform the classification problem based on vectors of the form x =
(x1,x2)T , where x1 and x2 are, respectively, the lengths of the major and minor
axis of an elliptical blob, the only type left after screening. Alternatively, we could
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x1

x2

+

�

d( ) = 0x

1.36

Figure P12.8

use the eigen axes for the same purpose. (See Section 11.2.1 on obtaining the
major axes or the end of Section 11.4 regarding the eigen axes.) The mean vector
of each class needed to implement a minimum distance classifier is given in the
problem statement as the average length of each of the two axes for each class
of blob. If‘ they were not given, they could be obtained by measuring the length
of the axes for complete ellipses that have been classified a priori as belonging
to each of the three classes. The given set of ellipses would thus constitute a
training set, and learning would consist of computing the principal axes for all
ellipses of one class and then obtaining the average. This would be repeated for
each class. A block diagram outlining the solution to this problem is straightfor-
ward.

Problem 12.8
(a) As in Problem 12.7,

m1 =

'
0
0

(

m1 =

'
0
0

(

m1 =

'
0
0

(

C1 =
1

2

'
1 0
0 1

(
; C−1

1 = 2

'
1 0
0 1

(
; |C1|= 0.25

and

C2 = 2

'
1 0
0 1

(
; C−1

2 =
1

2

'
1 0
0 1

(
; |C2|= 4.00.
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Because the covariance matrices are not equal, it follows from Eq. (12.2-26) that

d 1(x) = −1

2
ln(0.25)− 1

2

)
xT

'
2 0
0 2

(
x

0

= −1

2
ln(0.25)− (x 2

1 +x 2
2 )

and

d 2(x) = −1

2
ln(4.00)− 1

2

)
xT

'
0.5 0
0 0.5

(
x

0

= −1

2
ln(4.00)− 1

4
(x 2

1 +x 2
2 )

where the term lnP(ωj ) was not included because it is the same for both deci-
sion functions in this case. The equation of the Bayes decision boundary is

d (x) = d 1(x)−d 2(x) = 1.39− 3

4
(x 2

1 +x 2
2) = 0.

(b) Figure P12.8 shows a plot of the boundary.

Problem 12.10
From basic probability theory,

p (c ) =
∑

x

p (c/x)p (x).

For any pattern belonging to classωj , p (c/x) = p (ωj /x). Therefore,

p (c ) =
∑

x

p (ωj /x)p (x).

Substituting into this equation the formula p (ωj /x) = p (x/ωj )p (ωj )/p (x) gives

p (c ) =
∑

x

p (x/ωj )p (ωj ).

Because the argument of the summation is positive, p (c ) is maximized by maxi-
mizing p (x/ωj )p (ωj ) for each j . That is, if for each x we compute p (x/ωj )p (ωj )
for j = 1,2, ...,W , and use the largest value each time as the basis for selecting
the class from which x came, then p (c ) will be maximized. Since p (e ) = 1−p (c ),
the probability of error is minimized by this procedure.



113

Problem 12.12
We start by taking the partial derivative of J with respect to w:

∂ J

∂ w
=

1

2

�
ysgn(wT y)− y


where, by definition, sgn(wT y) = 1 if wT y > 0, and sgn(wT y) = −1 otherwise.
Substituting the partial derivative into the general expression given in the prob-
lem statement gives

w(k + 1) =w(k )+
c

2

-
y(k)− y(k)sgn

�
w(k)T y(k)

.
where y(k ) is the training pattern being considered at the k th iterative step. Sub-
stituting the definition of the sgn function into this result yields

w(k + 1) =w(k )+ c

)
0 if w(k)T y(k)
y(k ) otherwise

where c > 0 and w(1) is arbitrary. This expression agrees with the formulation
given in the problem statement.

Problem 12.14
The single decision function that implements a minimum distance classifier for
two classes is of the form

d i j (x) = xT (mi −mj )− 1

2
(mT

i mi −mT
j mj ).

Thus, for a particular pattern vector x, when d i j (x)> 0, x is assigned to classω1

and, when d i j (x) < 0, x is assigned to class ω2. Values of x for which d i j (x) = 0
are on the boundary (hyperplane) separating the two classes. By letting w =
(mi −mj ) and wn+1 = − 1

2 (m
T
i mi −mT

j mj ), we can express the above decision
function in the form

d (x) =wT x−wn+1.

This is recognized as a linear decision function in n dimensions, which is imple-
mented by a single layer neural network with coefficients

wk = (mi k −m j k ) k = 1,2, . . . ,n

and

θ =wn+1 =−1

2
(mT

i mi −mT
j mj ).
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Problem 12.16
(a) When P(ωi ) = P(ωj ) and C= I.

(b) No. The minimum distance classifier implements a decision function that is
the perpendicular bisector of the line joining the two means. If the probability
densities are known, the Bayes classifier is guaranteed to implement an opti-
mum decision function in the minimum average loss sense. The generalized
delta rule for training a neural network says nothing about these two criteria, so
it cannot be expected to yield the decision functions in Problems 12.14 or 12.15.

Problem 12.18
All that is needed is to generate for each class training vectors of the form x =
(x1,x2)T , where x1 is the length of the major axis and x2 is the length of the mi-
nor axis of the blobs comprising the training set. These vectors would then be
used to train a neural network using, for example, the generalized delta rule.
(Because the patterns are in 2D, it is useful to point out to students that the neu-
ral network could be designed by inspection in the sense that the classes could
be plotted, the decision boundary of minimum complexity obtained, and then
its coefficients used to specify the neural network. In this case the classes are far
apart with respect to their spread, so most likely a single layer network imple-
menting a linear decision function could do the job.)

Problem 12.20
The first part of Eq. (12.3-3) is proved by noting that the degree of similarity, k , is
non-negative, so D(A, B ) = 1/k ≥ 0. Similarly, the second part follows from the
fact that k is infinite when (and only when) the shapes are identical.

To prove the third part we use the definition of D to write

D(A,C )≤max [D(A, B ),D(B ,C )]

as
1

ka c
≤max

�
1

kab
,

1

kbc

�

or, equivalently,
ka c ≥min [kab ,kbc ]

where ki j is the degree of similarity between shape i and shape j . Recall from
the definition that k is the largest order for which the shape numbers of shape i
and shape j still coincide. As Fig. 12.24(b) illustrates, this is the point at which
the figures ”separate” as we move further down the tree (note that k increases
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Figure P12.20

as we move further down the tree). We prove that ka c ≥ min[kab ,kbc ] by con-
tradiction. For ka c ≤min[kab ,kbc ] to hold, shape A has to separate from shape
C before (1) shape A separates from shape B , and (2) before shape B separates
from shape C , otherwise kab ≤ ka c or kbc ≤ ka c , which automatically vio-
lates the condition ka c <min[kab ,kbc ]. But, if (1) has to hold, then Fig. P12.20
shows the only way that A can separate from C before separating from B . This,
however, violates (2), which means that the condition ka c <min[kab ,kbc ] is vi-
olated (we can also see this in the figure by noting that ka c = kbc which, since
kbc < kab , violates the condition). We use a similar argument to show that if
(2) holds then (1) is violated. Thus, we conclude that it is impossible for the
condition ka c <min[kab ,kbc ] to hold, thus proving that ka c ≥min[kab ,kbc ] or,
equivalently, that D(A,C )≤max[D(A, B ),D(B ,C )].




